La diversification des génomes : brassages génétiques lors de la reproduction sexuée des eucaryotes

La fécondation entre gamètes haploïdes rassemble, dans une même cellule diploïde, deux génomes d’origine indépendante apportant chacun un lot d’allèles.

Chaque paire d’allèles résultant est constituée de deux allèles identiques (homozygotie) ou de deux allèles différents (hétérozygotie).

En fin de méiose, chaque cellule produite reçoit un seul des deux allèles de chaque paire avec une probabilité équivalente. Pour deux paires d’allèles, quatre combinaisons d’allèles sont possibles, équiprobables ou non en cas de gènes liés.

Le nombre de combinaisons génétiques possibles dans les gamètes est d’autant plus élevé que le nombre de gènes à l’état hétérozygote est plus grand chez les parents.

Les accidents génétiques de la méiose

Des anomalies peuvent survenir au cours de la méiose : crossing-over inégal ; migrations anormales de chromatides au cours des divisions de méiose… Ces accidents, souvent létaux, engendrent parfois une diversification importante des génomes et jouent un rôle essentiel dans l’évolution biologique (familles multigéniques, barrières entre populations…).

Notions fondamentales : clone ; brassage génétique (combinaison d’allèles) inter- et intrachromosomique (crossing-over) au cours de la méiose ; diversité́ des gamètes ; stabilité des caryotypes ; distinction reproduction et sexualité ; diversification génomique.

  • Il s’agit d’abord d’identifier les conséquences génétiques, pour les individus, des divisions cellulaires étudiées en classe de première.

Cela permet aussi de comprendre que la reproduction sexuée garantit l’émergence de nouveaux génomes chez les êtres vivants, en tolérant des erreurs (qui deviennent des innovations) au sein d’espèces vivantes de plus en plus complexes à l’échelle des temps géologiques ; et d’acquérir les principes de bases de l’analyse génétique sur des exemples simples.