Médaille
N°1 pour apprendre & réviser du collège au lycée.
Nombre dérivé
Définition

Définition

Soit $f$ une fonction définie sur un intervalle $I$ et $a$ un réel de cet intervalle.

Soit $h$ un nombre réel tel que $a+h$ appartienne à $I$.

On dit que $f$ est dérivable en $a$ si le taux d’accroissement de $f$ en $a$ admet pour limite un nombre réel lorsque $h$ tend vers zéro.

Ce nombre, noté $f'(a)$ est appelé nombre dérivé de $f$ en $a$.

Lorsque $f$ est dérivable en $a$ on a ainsi : $f'(a)=\lim\limits_{h\rightarrow0}\dfrac{f(a+h)-f(a)}{h}$.