Médaille
N°1 pour apprendre & réviser du collège au lycée.
Marianne

Conforme au programme
officiel 2018 - 2019

Notation de vecteurs
Bien rédiger

Introduction

Un vecteur a un sens, une direction et une longueur.
Pour les vecteurs, les mathématiques ont une écriture et un vocabulaire spécifiques.

Decription

  • Un vecteur est noté AB\overrightarrow{AB} ou u\overrightarrow{u}. Appliqué à un point, il correspond à une translation.
  • La norme d'un vecteur, notée AB||\overrightarrow{AB}|| est la longueur du vecteur AB\overrightarrow{AB} ou, autrement dit, la distance entre les points AA et BB. On dit qu’un vecteur est unitaire si sa norme est égale à 11.
  • Le point origine du vecteur AB\overrightarrow{AB} (ici le point AA) est le point de départ qui en caractérise le sens.
  • Le point extrémité de AB\overrightarrow{AB} (ici le point BB) est le point d'arrivée qui en caractérise le sens.
bannière attention

Attention

Il ne faut pas confondre direction et sens. Par exemple, le mouvement d'un ascenseur a une direction : la verticale ; et deux sens : la montée et la descente.

  • Le vecteur nul, noté 0\overrightarrow{0} ou AA\overrightarrow{AA} est un vecteur dont le point origine et le point extrémité sont confondus.
  • Le vecteur opposé du vecteur AB\overrightarrow{AB} est noté BA\overrightarrow{BA} ou alors AB-\overrightarrow{AB}. Son sens est contraire à celui du vecteur AB\overrightarrow{AB}.
  • Soient A(xA ;yA)\text{A}(xA\ ;yA) et B(xB ;yB)\text{B}(xB\ ;yB) deux points d’un plan. Le vecteur AB\overrightarrow{\text{AB}} a pour coordonnées AB(xBxA ; yByA)\overrightarrow{\text{AB}}(xB-xA\ ;\ yB-yA).
  • La norme du vecteur AB\overrightarrow{\text{AB}} est la longueur AB\text{AB} : AB=AB=(xBxA)2+(yByA)2\parallel\overrightarrow{\text{AB}}\parallel =\text{AB}=\sqrt{(xB-xA)^2+(yB-yA)^2}