Médaille
N°1 pour apprendre & réviser du collège au lycée.
Savoir déterminer une équation de droite connaissant deux points appartenant à cette droite
Savoir-faire

Pré-requis

  • L'équation réduite d'une droite oblique s'écrit $y=ax+b$ où $a$ et $b$ sont deux nombres réels constants.
  • $a$ est le coefficient directeur. C'est le nombre qui multiplie l'abscisse $x$ des points de la droite.
  • $b$ est l'ordonnée à l'origine. C'est le nombre qui est additionné ou soustrait.
  • Pour trouver le coefficient directeur d'une droite, on a besoin de connaître deux points $A(x_A\ ;y_A)$ et $B(x_B\ ;y_B)$ qui appartiennent à la droite dont on cherche l'équation réduite.
    Ensuite, il suffit d'appliquer la formule : $a=\dfrac{y_A-y_B}{x_A-x_B}$
  • Pour trouver l'ordonnée à l'origine, on utilise à nouveau l'un des deux points, par exemple le point $A(x_A\ ;y_A)$.
    Comme il appartient à la droite cherchée, on peut écrire l'équation : $y_A=a\times x_A+b$
    Dans l'équation $y_A=a\times x_A+b$, comme on connaît le $a$ calculé juste avant ainsi que $x_A$ et $y_A$ qui sont les coordonnées du point $A$, on peut résoudre l'équation pour trouver le $b$.

À l’aide d’un exemple nous allons montrer comment déterminer une équation de droite connaissant deux points appartenant à cette droite.

Soient $A(2\ ;5)$ et $B(3\ ;4)$ deux points appartenant à la droite $d$. Trouver l’équation de la droite $d$.

Etapes

Calculer le coefficient directeur $a$

Le coefficient directeur de $d$ est $a=\dfrac{5-4}{2-3}=-\dfrac{1}{3}$

Calculer l’ordonnée à l’origine $b$

Le point $A(2\ ;5)\in d$ donc :

$\begin{aligned} y_A&=a\times x_A+b\\ 5&=-\dfrac{1}{3}\times2+b\\ b&=5+\dfrac{2}{3}\\ b&=\dfrac{17}{3} \end{aligned}$

Conclure

Donc la droite $d$ a pour équation réduite $y=-\dfrac{x}{3}+\dfrac{17}{3}$