Médaille
N°1 pour apprendre & réviser du collège au lycée.
Équations de droites

Déjà plus de

1 million

d'inscrits !

0/3
0 / 15
Challenge tes acquis !
Remporte un max d’étoiles
et de school coins !
`

Introduction :

Une équation de droite permet de mettre en relation les coordonnées xx et yy de tous les points appartenant à cette droite.
Par exemple : y=2x3y=2x-3.
On a exprimé ici l'ordonnée yy des points de la droite en fonction des abscisses xx de ces points.

Dans ce cours, nous allons nous pencher sur les équations de droites et plus précisément sur la façon de les déterminer, de trouver une représentation graphique à partir d'une équation et de résoudre un système d'équations.

  • Tout au long du cours, nous considérerons que le plan est muni d’un repère orthonormé.

Vecteur directeur d’une droite

bannière definition

Définition

Vecteur directeur :

On appelle vecteur directeur v\vec{v} d’une droite (d)(d) un vecteur qui a la même direction que (d)(d).

Vecteur directeur Vecteur directeur

Le vecteur directeur d’une droite n’est pas unique : deux points quelconques de la droite peuvent définir un vecteur directeur.

Si on a deux vecteurs u\vec{u} et v\vec{v} directeurs de la droite (d)(d), alors u\vec{u} et v\vec{v} sont colinéaires et on a det(u,v)=0\det(\vec{u},\,\vec{v})=0.

bannière exemple

Exemple

Soit la droite (AB)(AB) définie par les points A(2;1)A\,(-2\,;1) et B(0;5)B\,(0\,;5). Le vecteur AB(24)\overrightarrow{AB} \begin{pmatrix} 2 \ 4 \end{pmatrix} est un vecteur directeur de la droite (AB)(\text{AB}). 3AB(612)3\overrightarrow{AB} \begin{pmatrix} 6 \ 12 \end{pmatrix} ou AB(24)-\overrightarrow{AB} \begin{pmatrix} -2 \ -4\end{pmatrix} sont tous les deux des vecteurs directeurs de la droite (AB)(\text{AB}).

Déterminer l'équation d'une droite

Il y a 3 types de droites :

  • les droites non parallèles aux axes du repère : les droites obliques.
  • les droites parallèles à l'axe des abscisses : les droites horizontales,
  • les droites parallèles à l'axe des ordonnées : les droites verticales,

Droites non parallèles à l’axe des ordonnées

bannière definition

Définition

Équation réduite d'une droite non parallèle à l’axe des ordonnées :

L'équation réduite d'une droite oblique s'écrit y=ax+by=ax+baa et bb sont deux nombres réels fixés.

aa est le coefficient directeur. C'est le nombre qui multiplie l'abscisse xx des points de la droite.

bb est l'ordonnée à l'origine. C'est le nombre qui est additionné ou soustrait.

bannière exemple

Exemple

  • Soit y=5x3y=5x-3
  • 55 est le coefficient directeur.
  • 3-3 est l'ordonnée à l'origine.
bannière à retenir

À retenir

  • Pour trouver le coefficient directeur d'une droite, on a besoin de connaître deux points A(xA ;yA)A(xA\ ;yA) et B(xB ;yB)B(xB\ ;yB) qui appartiennent à la droite dont on cherche l'équation réduite.

Ensuite, il suffit d'appliquer la formule : a=yByAxBxAa=\dfrac{yB-yA}{xB-xA}

  • Pour trouver l'ordonnée à l'origine, on utilise à nouveau l'un des deux points, par exemple le point A(xA ;yA)A(xA\ ;yA).

Comme il appartient à la droite cherchée, on peut écrire l'équation : yA=a×xA+byA=a\times xA+b

bannière propriete

Propriété

Deux droites sont parallèles si et seulement si elles ont le même coefficient directeur.

bannière astuce

Astuce

Dans l'équation yA=a×xA+byA=a\times xA+b, comme on connaît le aa calculé juste avant ainsi que xAxA et yAyA qui sont les coordonnées du point AA, on peut résoudre l'équation pour trouver le bb.

bannière exemple

Exemple

  • Soient A(2 ;5)A(2\ ;5) et B(3 ;4)B(3\ ;4) deux points appartenant à la droite dd.

Le coefficient directeur de dd est a=4532=1a=\dfrac{4-5}{3-2}=-1

Le point A(2 ;5)dA(2\ ;5)\in d donc :

yA=a×xA+b5=1×2+bb=5+2b=7\begin{aligned} yA&=a\times xA+b\ 5&=-1\times2+b\ b&=5+2\ b&=7 \end{aligned}

Donc la droite dd a pour équation réduite y=x+7y=-x+7

Si, dans l’équation réduite, a=0a=0, alors nous avons un cas particulier, celui d’une droite parallèle à l’axe des abcisses.

Droites parallèle à l’axe des abscisses

bannière definition

Définition

Équation réduite d'une droite parallèle à l’axe des abscisses (horizontale) :

L'équation réduite d'une droite horizontale s'écrit y=ky=kkk est un nombre réel fixé.

bannière exemple

Exemple

  • Soit y=7y=7

Cette équation de droite signifie que tous les points qui ont pour ordonnée 77 décrivent cette droite quelle que soit la valeur de leur abscisse.

Les points A(86 ;7)A(86\ ;7), B(23 ;7)B \left(-\dfrac{2}{3}\ ;7\right) ; C(2 ;7)C(-2\ ;7) et D(0 ;7)D(0\ ;7) appartiennent tous à la droite d'équation y=7y=7.

Cette droite d’équation y=7y=7 a pour vecteur directeur v(10)\vec{v} \begin{pmatrix} 1 \ 0 \end{pmatrix}.

bannière à retenir

À retenir

Pour trouver l'équation réduite d'une droite horizontale, il suffit de connaître un point qui appartient à cette droite et de prendre son ordonnée.

bannière exemple

Exemple

Le point (3 ;8)(-3\ ;-8) appartient à la droite horizontale dd.

  • Donc d:y=8d:y=-8

Droites parallèles à l’axe des ordonnées

bannière definition

Définition

Équation réduite d'une droite parallèles à l’axe des ordonnées (verticale) :

L'équation réduite d'une droite verticale s'écrit x=kx=kkk est un nombre réel fixé.

bannière exemple

Exemple

  • Soit x=2x=-2

Cette équation de droite signifie que tous les points qui ont pour abscisse 2-2 décrivent cette droite quelle que soit la valeur de leur ordonnée.

Les points A(2 ;0)A\,(-2\ ; 0), B(2 ;26)B\,(-2\ ; 26), C(2 ;36)C\,(-2\ ; 36) et D(2 ;56)D\,\left(-2\ ; \dfrac{\sqrt{5}}{6}\right) appartiennent tous à la droite d'équation x=2x=-2.

Cette droite d’équation x=2x=-2 a pour vecteur directeur u(01)\vec{u} \begin{pmatrix} 0 \ 1 \end{pmatrix}.

bannière à retenir

À retenir

Pour trouver l'équation réduite d'une droite verticale, il suffit de connaître un point qui appartient à cette droite et de prendre son abscisse.

bannière exemple

Exemple

Le point (3 ;8)(-3\ ;-8) appartient à la droite verticale dd.

  • Donc d:x=3d:x=-3

Équation cartésienne d’une droite

bannière definition

Définition

Équation cartésienne d’une droite :

Soit une droite (d)(d) déterminée par une point A(xA;yA)A\,(xA\,; yA) et un vecteur directeur u(ba)\vec{u} \begin{pmatrix} -b \ a \end{pmatrix}, avec (a ;b)(0 ;0)a\ ;\,b)\neq (0\ ;\,0). Une équation cartésienne de la droite (d)(d) est du type :

ax+by+c=0ax+by+c=0

bannière demonstration

Démonstration

Soit un point M(x;y)M\,(x\,; y) un point quelconque de la droite (d)(d). On a alors les vecteurs AM\overrightarrow{AM} et u\vec{u} qui sont colinéaires, c’est-à-dire que det(AM,u)\det(\overrightarrow{AM},\,\vec{u}) est nul.

On a AM(xxAyyA)\overrightarrow{AM} \begin{pmatrix} x-xA \ y-yA \end{pmatrix} et donc :

det(AM,u)=a(xxA)(b)(yyA)=0\det(\overrightarrow{AM},\, \vec{u})=a(x-xA)-(-b)(y-yA)=0

Ainsi, ax+byaxAbyA=0ax+by-axA-byA=0 et si on pose c=axAbyAc=-axA-byA, on obtient la relation :

ax+by+c=0ax+by+c=0

Si on a seulement l’équation réduite d’une droite de la forme y=mx+py=mx+p, alors un vecteur directeur de la droite est u(1m)\vec{u} \begin{pmatrix} 1 \ m \end{pmatrix}.

L’équation cartésienne d’une droite n’est pas unique. Il est possible de multiplier les coefficients par un facteur kk non nul.
Par exemple, la droite d’équation 2xy+1=0-2x-y+1=0, si on multiplie les coefficients par 2-2, devient la droite d’équation 4x+2y2=04x+2y - 2=0.

bannière exemple

Exemple

  • Soit la droite verticale passant par le point A(2;1)A\,(2\,; 1) et de vecteur directeur u(02)\vec{u} \begin{pmatrix} 0 \ 2\end{pmatrix}.

Soit M(x;y)M\,(x\,; y) un point quelconque de la droite : alors AM(x2y1)\overrightarrow{AM} \begin{pmatrix} x-2 \ y-1 \end{pmatrix} et on a u\vec{u} et AM\overrightarrow{AM} colinéaires.

Ainsi, det(AM,u)=2×(x2)0×(y1)=0\det(\overrightarrow{AM},\, \vec{u})=2\times(x-2)-0\times(y-1)=0. On obtient alors comme équation cartésienne de cette droite :

x=2x=2

  • Soit la droite horizontale passant par le point B(2;3)B\,(-2\,; 3) et de vecteur directeur v(10)\vec{v} \begin{pmatrix} 1 \ 0 \end{pmatrix}.

Soit M(x;y)M\,(x\,; y) un point quelconque de la droite : alors BM(x+2y3)\overrightarrow{BM} \begin{pmatrix} x+2 \ y-3 \end{pmatrix} et on a v\vec{v} et BM\overrightarrow{BM} colinéaires.

Ainsi, det(BM,v)=0×(x+2)(y3)=0\det(\overrightarrow{BM}, \vec{v})=0\times (x+2)-(y-3)=0. On obtient alors comme équation cartésienne de cette droite :

y=3y=3

  • Soit la droite oblique passant par les points C(0;2)C\,(0\,; -2) et D(3;1)D\,(-3\,; 1). On peut prendre comme vecteur directeur de la droite (DC)(DC) le vecteur DC(33)\overrightarrow{DC} \begin{pmatrix} -3 \ 3 \end{pmatrix}.

Soit M(x;y)M\,(x\,; y) un point quelconque de la droite (DC)(DC) : alors CM(xy+2)\overrightarrow{CM} \begin{pmatrix} x \ y+2 \end{pmatrix} et on a DC\overrightarrow{DC} et CM\overrightarrow{CM} colinéaires.

Ainsi, det(CM,DC)=3x(3)(y+2)=0\det(\overrightarrow{CM}, \overrightarrow{DC})=3x-(-3)(y+2)=0. On obtient alors comme équation cartésienne de cette droite :

3x+3y+6=03x+3y+6=0

  • Nous pourrions aussi la simplifier : x+y+2=0x+y+2=0.

Alt texte

Représentation graphique d'une droite

Droites non parallèles aux axes du repère

  • Tracer la droite d3d_3 d'équation y=3x+1y=3x+1
bannière astuce

Astuce

Il faut trouver deux points qui appartiennent à cette droite, puis tracer la droite qui passe par ces deux points. Pour cela, on donne à xx deux valeurs particulières et on calcule les valeurs de yy correspondantes.

  • Si x=0x=0, alors y=3×0+1=1y=3\times0+1=1
  • Si x=1x=1, alors y=3×1+1=4y=3\times1+1=4

Donc la droite d3d_3 passe par les points (0 ;1)(0\ ;1) et (1 ;4)(1\ ;4).

La droite d'équation y = 3x + 1

bannière à retenir

À retenir

  • Cette droite est la représentation graphique de la fonction affine, définie sur R\mathbb R par f(x)=3x+1f(x)=3x+1.
  • Cette droite est une droite oblique qui a pour coefficient directeur 33 et ordonnée à l'origine 11.

Droites parallèles à l’axe des abscisses

  • Tracer la droite d2d_2 d'équation y=5y=5
bannière astuce

Astuce

On sait que d2d_2 est une droite horizontale car son équation est de la forme y=by=b avec bb réel.

On place donc le point de coordonnées (0 ;5)(0\ ;5) et on trace une droite parallèle à l'axe des abscisses qui passe par ce point.

La droite d'équation y = 5

bannière à retenir

À retenir

  • Cette droite est la représentation graphique de la fonction constante, définie sur R\mathbb R par f(x)=5f(x)=5.
  • Cette droite est une droite oblique qui a pour coefficient directeur 00 et pour ordonnée à l'origine 55.

Droites parallèles à l’axe des ordonnées

  • Tracer la droite d1d_1 d'équation x=2x=-2
bannière astuce

Astuce

On sait que d1d_1 est une droite verticale car son équation est de la forme x=kx=k avec kk réel.

On place donc le point de coordonnées (2 ;0)(-2\ ;0) et on trace une droite parallèle à l'axe des ordonnées qui passe par ce point.

La droite d'équation x = -2

Résolution de système d'équations

bannière definition

Définition

Résolution d'un système :

Les nombres aa, bb, cc, aa', bb' et cc' sont des réels avec a0a\neq0, b0b\neq0, a0a'\neq0 et b0b'\neq0.

Soit le système {ax+by+c=0ax+by+c=0\begin{aligned}\left\lbrace \begin {array}{lcl} ax+by+c&=&0\ a'x+b'y+c'&=&0\ \end{array} \right.\end{aligned}

Résoudre le système revient à déterminer le couple de réels (x ;y)(x\ ;y) vérifiant simultanément les deux équations.

bannière attention

Attention

Dans la définition plus haut, nous avons supposés aa, bb, aa' et bb' tous non nuls. Mais le système peut évidemment être résolu :

  • si un seul est nul ;
  • si (a ;b)=(0 ;0)(a\ ;\,b^{\prime} ) = (0\ ;\,0) ;
  • si (a ;b)=(0 ;0)(a^{\prime} \ ;\,b) = (0\ ;\,0).

On remarque que le système est constitué de deux équations cartésiennes de droites.

bannière definition

Définition

Résolution graphique d'un système :

Soit le système {ax+by+c=0ax+by+c=0\begin{aligned}\left\lbrace \begin {array}{lcl} ax+by+c&=&0\ a'x+b'y+ c'&=&0 \ \end{array} \right.\end{aligned}

Résoudre graphiquement un système revient à déterminer le point d'intersection des droites d'équation ax+by+c=0ax+by+c=0 et ax+by+c=0a'x+b'y+c'=0.

Il y a trois types de cas :

  • si les deux droites sont distinctes et parallèles (elles ont le même coefficient directeur), il n’y a pas de solution ;
  • si elles sont confondues, il y a une infinité de couples qui sont solutions ;
  • si elles sont sécantes, il y a un seul couple qui est solution.

Pour résoudre un système d'équations, on peut utiliser la méthode par substitution ou la méthode par combinaison.

Méthode par substitution

Cette méthode est utilisée lorsqu'une des inconnues a pour coefficient 11.

bannière exemple

Exemple

{3x+5y2=06x+y13=0{3x+5y=2(1)6x+y=13(2)\begin{cases} 3x+5y-2&=&0\ 6x+y-13&=&0 \end{cases} \Leftrightarrow \begin{cases} 3x+5y&=2&(1)\ 6x+y&=13&(2) \end{cases}

  • On choisit l'une des deux équations du système dans laquelle on exprime une inconnue en fonction de l'autre :

(2) 6x+y=13  y=6x+13(2) \ 6x+y=13\ \Leftrightarrow\ y=-6x+13

  • On choisit de nouveau l'une des deux équations du système et on remplace l'inconnue par l'expression que l'on vient de déterminer :

3x+5×(6x+13)=23x30x+652=027x+63=0x=6327x=73\begin{aligned} 3x+5\times (-6x+13)&=2\ 3x-30x+65-2&=0\ -27x+63&=0\ x&=\dfrac{-63}{-27}\ x&=\dfrac{7}{3}\ \end{aligned}

  • Maintenant qu'on a déterminé la valeur d'une inconnue, on peut trouver la valeur de l'autre inconnue :
  • On remplace xx par 73\dfrac{7}{3} dans (1)(1)

3×73+5y=272+5y=05y=5y=1\begin{aligned}\ 3\times \dfrac{7}{3}+5y&=2\ 7-2+5y&=0\ 5y&=-5\ y&=-1 \end{aligned}

  • Ou on remplace xx par 73\dfrac{7}{3} dans (2)(2)

6×73+y=13423+y=1314+y=13 y=1\begin{aligned}\ 6\times\dfrac{7}{3}+y&=13\ \dfrac{42}{3}+y&=13\ 14+y&=13\\ y&=-1 \end{aligned}

bannière astuce

Astuce

Faire le calcul dans les deux équations permet de s'assurer que l'on n'a pas commis d'erreur.

  • Le système {3x+5y=26x+y=13\left\lbrace \begin{array}{lclr} 3x+5y&=&2&\ 6x+y&=&13&\ \end{array} \right. admet pour solution les valeurs x=73x=\dfrac{7}{3} et y=1y=-1, ce que permet de vérifier la représentation graphique.

bannière à retenir

À retenir

À l'aide de l'une des équations, on exprime une inconnue en fonction de l'autre. On reporte cette expression dans la seconde équation qui ne comporte plus qu'une inconnue, équation que l'on sait résoudre. Il suffit ensuite de calculer la seconde inconnue.

Méthode par combinaison

Cette méthode est utilisée lorsqu'aucune des inconnues n'a pour coefficient 11.

bannière exemple

Exemple

{2x+7y4=05x+8y3=0{2x+7y=45x+8y=3\begin{cases} 2x+7y-4&=0\ 5x+8y-3&=0 \end{cases} \Leftrightarrow \begin{cases} 2x+7y&=4\ 5x+8y&=3 \end{cases}

  • On multiplie chacune des deux équations par un réel judicieusement choisi afin d'éliminer une inconnue en additionnant les deux équations :
  • Nous choisissons, bien sûr, l’inconnue à éliminer pour que les calculs soient les plus simples possibles.

Ici, multiplier par 55 et par 2-2 semble le plus simple.

  • Nous choisissons donc d’éliminer xx.

{2x+7y=45x+8y=3{10x+35y=2010x16y=6\begin{cases} 2x+7y&=&4 \ 5x+8y&=&3 \end{cases} \Leftrightarrow \begin{cases} 10x+35y&=&20 \ -10x-16y&=&-6 \end{cases}

Donc, en additionnant les deux équations, on obtient :

10x10x+35y16y=20619y=14y=1419\begin{aligned} 10x-10x+35y-16y=20-6 &\Leftrightarrow 19y=14 \ &\Leftrightarrow y=\dfrac {14}{19} \end{aligned}

  • Une fois trouvée la valeur d'une inconnue, on peut trouver la valeur de l'autre :

2x+7×1419=42x=76199819x=2219×12x=1119\begin{aligned} 2x+7\times \dfrac{14}{19}=4 &\Leftrightarrow 2x = \dfrac{76}{19}-\dfrac{98}{19} \ &\Leftrightarrow x= -\dfrac{22}{19} \times \dfrac 12 \ &\Leftrightarrow x=-\dfrac{11}{19} \end{aligned}

  • Le système admet donc pour solution le couple (x=1119 ;y=1419)\left(x =-\dfrac{11}{19}\ ;\,y =\dfrac{14}{19}\right).
bannière à retenir

À retenir

On multiplie chacune des équations par un réel approprié de telle façon qu'en additionnant les deux nouvelles équations, l'une des inconnues est éliminée. On peut alors déterminer l'autre inconnue et résoudre le système.

Conclusion :

Nous avons vu qu’il existe deux façons de définir une droite dans un repère orthonormé : par son équation cartésienne, obtenue grâce au déterminant de deux vecteurs, ou par un de ses points et un vecteur directeur.
C’est par l’une ou l’autre caractérisation qu’il sera possible de résoudre des problèmes de parallélisme ou de déterminer les coordonnées du point d’intersection de plusieurs droites.