Médaille
N°1 pour apprendre & réviser du collège au lycée.
Suites numériques

Déjà plus de

1 million

d'inscrits !

Introduction :

Les suites sont une nouveauté vue en première même si tu les utilises déjà depuis de nombreuses années sans les nommer ainsi. Par exemple, la liste des entiers naturels impairs rangés dans l’ordre croissant 1, 3, 5, 7, 9… est une suite numérique.

Nous allons tout d’abord parler des modes de génération d’une suite numérique et nous verrons comment représenter graphiquement une telle suite. Nous continuerons avec le sens de variation puis nous introduirons la notion de limite d’une suite numérique.

Modes de génération d’une suite numérique et représentation graphique

Définition d’une suite numérique

bannière definition

Définition

Suite numérique :

  • Une suite numérique $u$ est une fonction définie sur $\mathbb N$, à valeurs dans $\mathbb R$ :

$\begin{aligned} u :\mathbb N&\rightarrow \mathbb R\\ n&\rightarrow u(n)\text{ aussi noté }u_n\\ \end{aligned}$

  • Pour tout entier naturel $n$, le nombre $u(n)$ est appelé terme de rang $n$ ou terme général de la suite.

On note alors cette suite $(u_n)_{n\in\mathbb N}$ ou $(u_n)_{n≥0}$ ou encore $(u_n)$.

bannière astuce

Astuce

On peut lire la définition de la manière suivante : une suite numérique $u$ est une fonction définie sur $\mathbb N$, à valeurs dans $\mathbb R$, qui à tout entier naturel $n$ associe le nombre réel « $u$ de $n$ » aussi noté « $u$ indice $n$ ».

bannière exemple

Exemple

La liste $5\;; 10\; ; 15\;; 20\;; 25…$ correspond à la suite $(u_n)$ telle que $u_0=5;\ u_1=10 ;u_2=15; u_3=20…$

  • On dit que $5$ est le terme de rang $0$ ; $10$ est le terme de rang $1$ ; $15$ est le terme de rang $2$…

Suite définie par une formule explicite $u\ _n=f(n)$

bannière definition

Définition

Suite définie par une formule explicite :

Une suite est définie par une formule explicite lorsque $u_n$ s’exprime directement en fonction de $n$. Dans ce cas, on peut calculer chaque terme à partir de son indice.

bannière exemple

Exemple

Pour tout entier naturel $n$, on a $u_n=\sqrt{2n+6}=f(n)$

Alors :

$u_0=\sqrt{2×0+6}=\sqrt6$
$u_1=\sqrt{2×1+6}=\sqrt8$
$u_2=\sqrt{2×2+6}=\sqrt{10}$

$u_{47}=\sqrt{2×47+6}=\sqrt{100}=10$

bannière propriete

Propriété

Suite numérique :

Une suite numérique $u_n$ définie par une formule explicite se représente par un nuage de points de coordonnées $(n\ ; u_n)$.

  • La représentation graphique de la suite $u$ est formée des points $A_0,\ A_1,\ A_2,\:…$

Représentation graphique d'une suite numérique

  • Tous ces points sont sur la courbe représentative de la fonction $f$ puisque $u_n=f(n)$ :

  • Le terme $u_k$ de la suite est l’ordonnée du point $A_k$ d’abscisse $k$.

Suite définie par une relation de récurrence $u_{n+1}=f(u_n)$

bannière definition

Définition

Suite définie par une relation de récurrence :

Une suite est définie par une relation de récurrence quand elle est définie par la donnée de :

  • son premier terme ;
  • une relation qui permet de calculer chaque terme à partir du précédent.

Contrairement à une formule explicite, une relation de récurrence ne permet pas de calculer directement un terme de rang donné sans avoir calculé tous les termes qui le précèdent.

bannière exemple

Exemple

On considère la suite $(u_n)$ définie par $\begin{aligned}\left\{ \begin {array}{rcl} u_0&=&-1,5 \\ u_{n+1}&=&\sqrt{4u_n+8} \end{array} \right.\end{aligned}$

Pour calculer $u_1$, on utilise la valeur de $u_0$
$\begin{aligned} u_1&=\sqrt{4u_0+8}\\&=\sqrt{4\times(-1,5)+8}\\&=\sqrt 2\end{aligned}$

Pour calculer $u_2$, on utilise la valeur de $u_1$
$\begin{aligned} u_2&=\sqrt{4{u_1}+8}\\&=\sqrt{4×\sqrt 2+8}\\&=\sqrt{4\sqrt 2+8}…\end{aligned}$

bannière astuce

Astuce

MÉTHODE :

Pour représenter graphiquement une suite définie par une relation de récurrence, il faut commencer par tracer dans un repère la fonction $f$ concernée.

Ici, il s’agit de la fonction $f(x)=\sqrt{4x+8}$.

Ensuite :

  • Tracer également la droite $y=x$ qui permettra de reporter les termes de la suite sur l’axe des abscisses.
  • Placer $u_0$ sur l’axe des abscisses ; $u_1$ est l’image de $u_0$ par la fonction $f$
  • Pour déterminer $u_2=f(u_1)$ tu dois d’abord reporter $u_1$ sur l’axe des abscisses.
  • Pour cela, il faut utiliser la droite $y=x$ ; $u_2$ est l’image de $u_1$ par la fonction $f$, et ainsi de suite…

Sens de variation d’une suite

bannière definition

Définition

Sens de variation d’une suite :

On dit qu’une suite $(u_n)$ définie sur $\mathbb N$ est :

  • croissante si et seulement si, pour tout entier naturel $n$, on a $u_{n+1}≥u_n$ ;
  • décroissante si et seulement si, pour tout entier naturel $n$, on a $u_{n+1}≤u_n$ ;
  • constante si et seulement si, pour tout entier naturel $n$, on a $u_{n+1}=u_n$.
  • Lorsqu’une suite est toujours croissante, ou alors toujours décroissante, on dit qu’elle est monotone.
bannière attention

Attention

Pour certaines suites, l’inégalité $u_{n+1}≥u_n$ n’est vraie que pour $n≥p$, où $p$ est un entier ; dans ce cas, on dit que $(u_n)$ n’est croissante qu’à partir du rang $p$.

bannière astuce

Astuce

MÉTHODE :

Pour savoir si une suite est croissante ou décroissante, on étudie le signe de la différence entre deux termes consécutifs quelconques :

  • si, pour tout entier naturel $n$, on a $u_{n+1}-u_n≥0$, alors la suite $(u_n)$ est croissante ;
  • si, pour tout entier naturel $n$, on a $u_{n+1}-u_n≤0$, alors la suite $(u_n)$ est décroissante ;
  • si, pour tout entier naturel $n$, on a $u_{n+1}-u_n=0$, alors la suite $(u_n)$ est constante.
bannière exemple

Exemple

Étudions des variations de la suite $(u_n)$ définie sur $\mathbb N$ par $u_n=2-3n$.

Calculons $u_{n+1}-u_n$ :

$\begin{aligned} u_{n+1}-u_n&=\big[2-3(n+1)\big]-(2-3n) \\ &=(2-3n-3)-(2-3n) \\ &=2-3n-3-2+3n \\ u_{n+1}-u_n& =-3 \end{aligned}$

  • Ainsi $u_{n+1}-u_n<0$ donc la suite $(u_n)$ est décroissante.

Lorsqu’une suite est définie par une formule explicite de la forme $u_n=f(n)$, il existe une autre méthode pour donner les variations de la suite.

On utilise la propriété suivante :

bannière propriete

Propriété

Soit $u$ une suite définie pour tout entier $n≥p$ par $u_n=f(n)$ où $f$ est une fonction définie sur l’intervalle $\big[p\ ; +\infty\big[$.

  • si la fonction $f$ est croissante sur $\big[p\ ; +\infty\big[$ alors la suite $u$ est croissante à partir du rang $p$.
  • si la fonction $f$ est décroissante sur $\big[p\ ; +\infty\big[$ alors la suite $u$ est décroissante à partir du rang $p$.