Médaille
N°1 pour apprendre & réviser du collège au lycée.
Angles et parallélisme

Déjà plus de

1 million

d'inscrits !

Vocabulaire des angles

  • Deux angles sont complémentaires lorsque la somme de leurs mesures est égale à 90°90\degree.
  • Deux angles sont supplémentaires lorsque la somme de leurs mesures est égale à 180°180\degree.
  • Deux angles adjacents sont des angles qui :
  • ont le même sommet ;
  • ont un côté commun ;
  • sont situés d'un côté et de l'autre de ce côté commun.
  • On dit que deux angles sont opposés par le sommet lorsqu'ils ont le même sommet et que leurs côtés sont dans le prolongement les uns des autres.
  • Si deux angles sont opposés par le sommet, alors ils ont la même mesure.
  • Deux droites (d)(d) et (d)(d') sont coupées par une droite sécante (Δ)(\Delta) aux points AA et BB. Deux angles formés par ces trois droites sont alternes-internes si :
  • ils n'ont pas le même sommet ;
  • ils sont de part et d'autre de la sécante ;
  • ils sont à l'intérieur de la bande délimitée par les droites (d)(d) et (d)(d').
  • Deux droites (d)(d) et (d)(d') sont coupées par une droite sécante (Δ)(\Delta) aux points AA et BB. Deux angles formés par ces trois droites sont correspondants si :
  • ils n'ont pas le même sommet ;
  • ils sont du même côté de la sécante ;
  • l'un est à l'intérieur de la bande délimitée par les droites (d)(d) et (d)(d') et l'autre à l'extérieur.

Angles, parallèles et sécantes

  • Si deux angles alternes-internes sont formés par deux droites parallèles coupées par une droite sécante, alors ces deux angles ont la même mesure.
  • Si deux droites coupées par une droite sécante forment deux angles alternes-internes de même mesure, alors ces deux droites sont parallèles.
  • Si deux angles correspondants sont formés par deux droites parallèles coupées par une droite sécante, alors ces deux angles ont la même mesure.
  • Si deux droites coupées par une droite sécante forment deux angles correspondants de même mesure, alors ces deux droites sont parallèles.