Médaille
N°1 pour apprendre & réviser du collège au lycée.
Diffraction d’une onde

Déjà plus de

1 million

d'inscrits !

Introduction :

Les ondes sont des perturbations qui se propagent sans déplacement de matière, mais avec un transport d’énergie. Ces ondes ont des caractéristiques (longueur d’onde λ\lambda, fréquence ν\nu, vitesse cc, période TT) qui leurs sont propres et qui dépendent notamment de leur nature (électromagnétique ou mécanique). Cependant, parmi les caractéristiques des ondes, ce cours s’intéresse à ce qui se produit lorsqu’une onde heurte un obstacle. C’est le phénomène de diffraction de l’onde.
Ce cours présentera les caractéristiques du phénomène de diffraction des ondes, puis développera en détails la diffraction des ondes lumineuses et des ondes sonores.

Le phénomène physique de diffraction des ondes

Observation du phénomène de diffraction

Afin de mieux analyser la notion de diffraction d’une onde prenons l’exemple de la cuve à onde, qui permet de visualiser la formation et la propagation d’ondes à la surface d’un fluide.
Dans une cuve à onde, une règle verticale est reliée à un vibreur produisant ainsi des ondes progressives à la surface de l’eau. On place ensuite un obstacle pour observer la propagation de l’onde.

diffraction d’une onde physique chimie terminal schoolmouv cuve à onde

Nous observons qu’au passage de l’obstacle, la direction de propagation de l’onde change et devient circulaire, tout en continuant de se propager à la surface de l’eau.
De plus, nous remarquons que la longueur d’onde ne varie pas lorsque l’onde rencontre l’obstacle.

bannière à retenir

À retenir

Quand une onde électromagnétique (lumière, ondes radio…) ou mécanique (son, vague, onde sismique, etc.) rencontre un obstacle, sa direction de propagation peut varier sans que sa longueur d’onde λ\lambda, ni sa fréquence ff ne changent, car ces deux grandeurs sont propres à la source et au milieu de propagation qui reste le même.

  • C’est le phénomène de diffraction de l’onde.

diffraction d’une onde physique chimie terminal schoolmouv diffraction d’une onde

La diffraction

bannière definition

Définition

Diffraction :

Une onde subit une diffraction lorsqu’elle rencontre une ouverture ou un obstacle (cheveu, poussière…) provoquant un changement de sa direction de propagation.

bannière à retenir

À retenir

Une onde ne subit de diffraction que lorsque l’obstacle ou l’ouverture rencontré est du même ordre de grandeur que la longueur d’onde de l’onde.
La diffraction dépend de l’ordre de grandeur de la longueur d’onde λ\lambda et de la taille d’ouverture aa de l’obstacle.

bannière attention

Attention

Ne pas confondre la diffraction et la réfraction qui est le changement de direction d’un faisceau lumineux lors d’un changement de milieu.

L’écart angulaire

Observons le schéma ci-dessous correspondant à la diffraction d’une onde émise par un faisceau laser monochromatique de longueur d’onde λ\lambda donnée. Devant le laser se trouve un obstacle ayant une fente de largeur aa, après l’obstacle est placé un écran à une distance DD, permettant d’observer la figure de diffraction d’une onde, que nous détaillerons dans la seconde partie de ce cours.

diffraction d’une onde physique chimie terminal schoolmouv diffraction d’une onde écart angulaire Diffraction d’une onde émise par un faisceau laser monochromatique

Lorsque le faisceau lumineux rencontre l’obstacle, le phénomène de diffraction se produit.

  • Ainsi, nous observons sur l’écran la figure de diffraction comportant des tâches lumineuses et une tâche centrale, séparées par des zones d’ombres. Cette figure est le résultat de la diffraction de l’onde.

Ici, nous allons nous intéresser à l’angle caractéristique de diffraction qui va nous permettre de quantifier la diffraction. Cet angle correspond à l’angle que fait le faisceau lumineux diffracté avec la droite passant par le milieu de la fente. De fait, il correspond au demi-angle de la tâche centrale de diffraction. Cet angle se nomme écart angulaire θ\theta de diffraction.

bannière definition

Définition

Écart angulaire :

L’écart angulaire θ\theta est le demi-angle de la tâche centrale de diffraction. Il a pour expression : θ=λa\theta=\frac{\lambda}{a} Avec :

  • θ\theta l’écart angulaire en radian (rad)(\text{rad}) ;
  • λ\lambda la longueur d’onde en mètre (m)(\text{m}) ;
  • aa la taille de l’ouverture ou de l’objet en mètre (m)(\text{m}).
bannière exemple

Exemple

Est-ce qu’un faisceau laser rouge peut subir une diffraction s’il rencontre une fente de 1 cm1\ \text{cm} ?

Le faisceau laser est une onde électromagnétique monochromatique de longueur d’onde 640 nm640\ \text{nm}. Nous allons vérifier que ces deux distances ont le même ordre de grandeur. Ainsi,

λ=640×109×102=6,4×105 cm\begin{aligned} \lambda &=640\times 10^{-9} \times 10^2\ &=6,4 \times 10^{-5}\ \text{cm} \end{aligned}

Nous observons alors que λ\lambda a un ordre de grandeur de ×105 cm\times 10^{-5}\ \text{cm} et aa a un ordre de grandeur de 1 cm1\ \text{cm}.

  • Ces deux grandeurs n’ont pas le même ordre de grandeur, donc dans cette situation nous n’observons pas de diffraction.

diffraction d’une onde physique chimie terminal schoolmouv pas de phénomène de diffraction

bannière à retenir

À retenir

Plus la dimension aa de la fente ou de l’obstacle que rencontre l’onde est petite par rapport à la longueur d’onde λ\lambda de l’onde, plus l’onde sera diffractée, c’est-à-dire plus l’angle de diffraction θ\theta sera important. Car θ=λa\theta=\dfrac{\lambda}{a}, donc θ\theta est inversement proportionnel à aa.

Diffraction d’une onde lumineuse

Une onde lumineuse visible est une onde électromagnétique de longueur d’onde λ\lambda comprise entre 350350 et 750 nm750\ \text{nm}. Par conséquent, une onde lumineuse subit une diffraction quand elle rencontre un obstacle de même ordre de grandeur que sa longueur d’onde.

Reprenons le schéma de diffraction du faisceau laser monochromatique mais cette fois-ci de couleur rouge. En plaçant un écran après une fente verticale et longue sur la trajectoire du faisceau de lumière, on observe la figure de diffraction suivante :

diffraction d’une onde physique chimie terminal schoolmouv onde électromagnétique Schéma de l’expérience de la diffraction d’une onde émise par un laser rouge

En se diffractant, le faisceau lumineux forme sur l’écran une succession de tâches lumineuses et de tâches sombres.

  • On observe également que la tâche lumineuse centrale a une plus grande intensité et est plus large que les autres.
bannière à retenir

À retenir

En observant le triangle rectangle ABCABC formé par l’onde lumineuse après son passage par la fente :

diffraction d’une onde physique chimie terminal schoolmouv écart angulaire

On peut calculer la tangente de l’écart angulaire θ\theta, qui est l’angle que fait la normale avec le faisceau lumineux délimitant la tâche centrale : tan θ=coteˊ opposeˊcoteˊ adjacent=BCAB=L2D=L2D\begin{aligned} \text{tan}\ \theta&=\dfrac{\text{cot\'{e} oppos\'{e}}}{\text{cot\'{e} adjacent}}\ &=\dfrac{BC}{AB}\ &=\dfrac{\frac{L}{2}}{D}\ &=\boxed{\dfrac{L}{2D}} \end{aligned} Avec :

  • LL le largeur de la tâche centrale, en mètre (m)(\text{m}) ;
  • DD la distance entre l’obstacle et l’écran, en mètre (m)(\text{m}).
bannière rappel

Rappel

Pour les petits angles mesurés en radian, on peut écrire :

  • tan θθ\text{tan}\ \theta\approx\theta
  • sin θθ\text{sin}\ \theta\approx\theta
  • cos θ1\text{cos}\ \theta\approx1
bannière exemple

Exemple

Un laser de couleur jaune est dirigé vers un obstacle d’ouverture aa et de largeur égale à 4 000 nm4\ 000\ \text{nm}. Puis, un écran est placé à une distance DD de 20 cm20\ \text{cm} de l’obstacle.
De plus, le laser émet une onde lumineuse monochromatique jaune qui possède une longueur d’onde de 575 nm575\ \text{nm}.

Calculer la largeur LL de la tâche centrale qu’on obtiendrait sur l’écran.

D’après la formule de la tangente de l’écart angulaire θ\theta, nous avons : tan θ=L2D\text{tan}\ \theta=\dfrac{L}{2D} Or θ\theta est un petit angle, donc tan θθ\text{tan}\ \theta\approx\theta. Ainsi,
θ=L2D\theta=\dfrac{L}{2D} Or, θ=λa\theta=\dfrac{\lambda}{a} Alors, θ=λa=L2D\boxed{\theta=\dfrac{\lambda}{a}=\dfrac{L}{2 D}} Donc, L=λ2DaL=\frac{\lambda2D}{a}

D’après l’énoncé, la longueur d’onde du laser est de 575 nm575\ \text{nm}. Soit, L=λ2Da= 575×109×2×20×1024000×1090,058 m5,8 cm\begin{aligned}L&=\frac{\lambda2D}{a}\ &=\ \frac{575\times10^{-9}\times2\times20\times10^{-2}}{4000\times10^{-9}}\ &\approx0,058\ \text{m}\ &\approx 5,8\ \text{cm} \end{aligned} Donc le diamètre LL de la tâche centrale est de 5,8 cm.5,8\ \text{cm}.

bannière exemple

Exemple

Une onde lumineuse est diffractée par une fente 1 et par une fente 2. En sachant que la taille de la fente 1 est inférieure à celle de la taille 2.

Identifiez la figure de diffraction ci-dessous attribuée au passage de l’onde par la fente 1.

diffraction d’une onde physique chimie terminal schoolmouv figure de diffraction

La figure AA présente une tâche centrale plus large. Or la taille de la fente s’exprime en fonction de la largeur de la tâche centrale par la relation : L=λ2DaL=\dfrac{\lambda 2D}{a}.
La largeur de la tâche centrale LL est donc inversement proportionnelle à la taille de la fente 1.

La figure de diffraction AA est donc attribuée au passage de l’onde lumineuse par la fente 1.

Expérimentalement, la figure de diffraction d’une onde électromagnétique par une fente longue et verticale sera perpendiculaire à la fente et aura l’aspect de la figure 1. Lorsque la fente est circulaire, nous observons expérimentalement la figure 2. Enfin, la figure 3 représente la diffraction d’une onde à travers une fente carrée.

diffraction d’une onde physique chimie terminal schoolmouv figure de diffraction

  • La figure de diffraction contient le motif de l’objet.

De plus, les figures de diffraction de deux obstacles complémentaires et de même largueur sont identiques, comme par exemple les figures de diffraction d’un cheveu et d’une fente longue et fine.

  • Comme nous pouvons l’observer sur les différentes fentes verticales vues ci-dessus, l’étalement se fait selon l’axe horizontal. Alors, la diffraction se déploie sur un axe perpendiculaire à l’axe de l’obstacle.

Diffraction d’une onde sonore

Une onde sonore audible est une onde mécanique dont la fréquence est comprise entre 20 Hz20\ \text{Hz} et 20 KHz20\ \text{KHz}.

  • Par conséquent, une onde sonore subit le phénomène de diffraction quand elle rencontre un obstacle de dimension aa de même ordre de grandeur que sa longueur d’onde.

Le son se propage dans l’air à une vitesse de 340 ms1340\ \text{m}\cdot \text{s}^{-1} avec une fréquence ff comprise entre 20 Hz20\ \text{Hz} et 20 KHz20\ \text{KHz}. Alors, la longueur d’onde de ces ondes est comprise entre 17 mm17\ \text{mm} et 17 m17\ \text{m}, car :

  • λmax=cf=34020=17 m\lambda_{\text{max}}=\dfrac{c}{f}=\dfrac{340}{20}=17\ \text{m} ;
  • λmin=cf=34020×103=17 mm\lambda_{\text{min}}=\dfrac{c}{f}=\dfrac{340}{20\times10^3}=17\ \text{mm}.
  • Sachant que la longueur d’onde et la taille de l’obstacle doivent être obligatoirement du même ordre de grandeur pour qu’il y ait diffraction alors, la taille de l’obstacle doit être comprise entre 10 mm10\ \text{mm} et 10 m10\ \text{m} (ordres de grandeur).
bannière à retenir

À retenir

On peut donc dire que la dimension de l’obstacle sera bien plus grande pour les ondes sonores que pour les ondes lumineuses afin de pouvoir observer une diffraction.

Il n’y a pas de figure de diffraction observable dans le cas des ondes sonores mais on peut établir un schéma pour aider à la visualisation :

diffraction d’une onde physique chimie terminal schoolmouv onde mécanique

bannière à retenir

À retenir

En se diffractant dans l’air, les ondes sonores planes deviennent circulaires après le passage de l’obstacle. La longueur d’onde, la fréquence et la vitesse de propagation restent quant à elle inchangées.

bannière exemple

Exemple

Dans cet exemple nous allons démontrer comment une personne assise dans une pièce peut entendre une autre personne située dans une autre pièce, sachant que les deux pièces sont séparées par une porte ouverte de largeur 80 cm80\ \text{cm}.

On considère que la fréquence ff de la conversation est de 300 Hz300\ \text{Hz} et que l’ouverture aa de la porte fait 80 cm80\ \text{cm}. λ=cf=340300=1,1 m\begin{aligned} \lambda&=\dfrac{c}{f}\ &=\dfrac{340}{300}\ &=1,1\ \text{m} \end{aligned}

Ainsi l’ouverture de la porte est du même ordre de grandeur que la longueur d’onde des ondes sonores (a<λ)(a<\lambda). Ces dernières subissent donc une diffraction par l’ouverture de la porte, et cela permet aux deux personnes de bien s’entendre.

diffraction d’une onde physique chimie terminal schoolmouv onde mécanique

Conclusion :

La diffraction est un phénomène physique naturelle qui consiste à changer la direction de propagation des ondes mécaniques et électromagnétiques, après la rencontre de ces dernières avec un obstacle de taille proche ou inférieure à leur longueur d’onde. Ainsi, la dimension d’un obstacle pouvant diffracter une onde sonore audible est bien supérieure à celle d’un obstacle capable de diffracter une onde lumineuse visible.