Exercices Limites d'une suite
Entrainement
- 1/4
On définit $(u_n)$ par :
$\bigg\lbrace\begin{aligned}\ u_0&=1 \\ u_{n+1}&=2u_n-n+1 \end{aligned}$
Démontrer par récurrence que pour tout $n\geq 0$, on a $u_n \geq n$. - 1/4
On pose $v_n=\dfrac{3n^2-3n}{3-3n^3}$
Quelle est la limite de $u_n$ ?
Évaluation
- 1/4
On pose $\bigg\lbrace\begin{aligned}\ &u_0=0\\&u_{n+1}=\sqrt{3u_n+4}\end{aligned}$
Montrer par récurrence que $(u_n)$ est majorée par 4.