Médaille
N°1 pour apprendre & réviser du collège au lycée.
Équation cartésienne d’un plan
Découvrez, sur SchoolMouv, des milliers de contenus pédagogiques, du CP à la Terminale, rédigés par des enseignants de l’Éducation nationale.
Les élèves de troisième, de première ou de terminale bénéficient, en plus, de contenus spécifiques pour réviser efficacement leur brevet des collèges, leur bac de français ou leur baccalauréat édition 2023.
Définition

Définition

Un plan de vecteur normal n(a;b;c)\overrightarrow {n}(a;b;c) a une équation de la forme ax+by+cz+d=0ax+by+cz+d=0dd désigne un nombre réel. On dit que c’est une équation cartésienne de ce plan.

Reciproquement, si aa, bb, cc et dd sont quatre nombres réels donnés avec aa, bb et cc non tous nuls, l’ensemble des points M(x;y;z)M(x;y;z) tels que ax+by+cz+d=0ax+by+cz+d=0 est un plan de vecteur normal n(a;b;c)\overrightarrow {n}(a;b;c).