Médaille
N°1 pour apprendre & réviser du collège au lycée.
Équation cartésienne d’un plan
Définition

Définition

Un plan de vecteur normal n(a;b;c)\overrightarrow {n}(a;b;c) a une équation de la forme ax+by+cz+d=0ax+by+cz+d=0dd désigne un nombre réel. On dit que c’est une équation cartésienne de ce plan.

Reciproquement, si aa, bb, cc et dd sont quatre nombres réels donnés avec aa, bb et cc non tous nuls, l’ensemble des points M(x;y;z)M(x;y;z) tels que ax+by+cz+d=0ax+by+cz+d=0 est un plan de vecteur normal n(a;b;c)\overrightarrow {n}(a;b;c).