Pré-requis
Loi uniforme :
et désignent deux nombres réels distincts avec .
Dire qu’une variable aléatoire suit la loi uniforme sur l’intervalle signifie que la densité de probabilité est une fonction constante sur .
La densité de probabilité de la loi uniforme sur est la fonction définie sur par :
La propriété suivante permet de calculer une probabilité dans le cas d’une loi uniforme.
est une variable aléatoire qui suit la loi uniforme sur . pour tout intervalle inclus dans :
L’espérance d’une variable aléatoire de densité sur est le nombre réel :
Dans le cas d’une loi uniforme, on a :
À l’aide d’un exemple nous allons montrer comment calculer la densité de probabilité et l'espérance d'une variable aléatoire suivant une loi uniforme.
Dans un supermarché un jour de grande affluence, le temps d’attente à la caisse, en minutes, suit la loi uniforme sur l’intervalle .
Quelle est la définition de la fonction densité de la loi de ?
Quelle est la probabilité pour que le temps d’attente soit inférieur à un quart d’heure ?
Quel est le temps d’attente moyen à la caisse ?
Etapes
Définir la fonction densité de la loi de
Loi de
Calculer une probabilité dans le cas d’une loi uniforme
Pour que le temps d’attente soit inférieur à un quart d’heure : p(T < 15)= p(2 < T < 15)= \dfrac{15-2}{20-2}= \dfrac{13}{18}
Calculer l’espérance mathématique
Le temps d’attente moyen à la caisse :
- Le temps d’attente moyen est de 11 minutes.