Médaille
N°1 pour apprendre & réviser du collège au lycée.
Savoir résoudre une équation du type ln(a)=ln(b)
Savoir-faire

Pré-requis

Résolvons $ln{(2x)}=ln{(x+3)}$

Etapes

Recherche de l’ensemble de définition

$ln{(x)}$ est défini uniquement pour $x\ \rangle\ 0$.

Il faut donc $2x\ \rangle\ 0$ et $x+3\ \rangle\ 0$, soit $x\ \rangle\ 0$ et $x\ \rangle\ -3$

  • c’est-à-dire $x\ \rangle\ 0$

Résolution de l’équation

$ln{(2x)}=ln{(x+3)} \Leftrightarrow 2x=x+3 \Leftrightarrow x=3$

Vérification

On vérifie que la solution trouvée appartient bien à l’ensemble de définition : on a bien $3\ \rangle\ 0$