Médaille
N°1 pour apprendre & réviser du collège au lycée.

Les outils d'étude

Déjà plus de

1 million

d'inscrits !

Introduction :

Pour représenter ou simplifier certains montages complexes, il est nécessaire de recourir à des outils d’étude. La connaissance de ces méthodes permet le dimensionnement des appareils lors des phases de développement ou de prototypage.

Nous avons vu, dans les cours précédents, les notions importantes d’intensité du courant et de la tension, ainsi que les composants principaux utilisés en électronique et en électricité.
Nous verrons, dans ce cours, les grandes lois de l’électricité permettant de déterminer les grandeurs électriques, nécessaires au dimensionnement d’un montage.

Les lois de Kirchhoff

Les lois de Kirchhoff s’appliquent aux circuits électriques, elles permettent de mettre en évidence la conservation de l’énergie et de la charge dans les montages électriques.
Avant de les étudier, faisons un petit rappel de vocabulaire avec, dans un circuit en dérivation, les nœuds, les branches et les mailles.

bannière definition

Définition

Un nœud :

Un nœud est l’intersection entre au moins 33 fils électriques.

bannière definition

Définition

Une branche :

Une branche regroupe tous les composants électriques entre deux nœuds.

bannière definition

Définition

Une maille :

Une maille regroupe l’ensemble des branches parcourues en partant d’un nœud pour y revenir.

La loi des nœuds

bannière theoreme

Théorème

Loi des nœuds :

La somme des intensités entrantes dans un nœud est égale à la somme des intensités qui sortent de ce nœud.

ΣIentrantes=ΣIsortantes\Sigma \,I\text{entrantes}=\Sigma \,I\text{sortantes}

bannière exemple

Exemple

Sur la portion de schéma ci-dessous, le nœud est repéré par la lettre AA :

  • l’intensité entrante est II,
  • les intensités sortantes sont I1I1, I2I2, I3I_3.

sciences ingénieur première électrocinétique outils d’étude loi des nœuds

  • La loi des nœuds donne :

I=I1+I2+I3I=I1+I2+I_3

La loi des mailles

Sur le schéma ci-dessous, pour faire le tour de la maille, on passe d’abord par le générateur GG, puis par l’interrupteur SS, ensuite par la résistance R1R1 et enfin par la résistance R2R2.

  • Lorsque l’on est de retour au générateur, on a alors réalisé une maille complète.
bannière theoreme

Théorème

Loi des mailles :

La somme algébrique des tensions dans une maille d’un circuit électrique est égale à zéro :

Σtension(s)=0\Sigma \,\text{tension(s)}=0

bannière attention

Attention

Dans cette loi, on mentionne la somme des tensions, mais il faut faire attention aux sens :

  • si la flèche de la tension considérée est dans le même sens que le sens du courant, alors on ajoutera sa valeur ;
  • si la flèche de la tension considérée est dans le sens inverse de celui du courant, alors on soustraira sa valeur.

Le pont diviseur de tension

Le pont diviseur de tension permet de calculer une tension proportionnelle par rapport à une autre tension.

  • On peut ainsi obtenir une tension servant de référence dans un montage électrique.

sciences ingénieur première électrocinétique outils d’étude

bannière à retenir

À retenir

Pour déterminer le potentiel UR2U{R2} aux bornes de la résistance R2R_2, il faut appliquer la formule suivante :

UR2=UGR2R1+R2U{R2}=UG\cdot \dfrac {R2}{R1+R2}

Le pont diviseur de courant

Le pont diviseur de courant permet de calculer le courant d’un montage composé de résistances en dérivation si l’on connaît l’intensité totale qui entre dans le nœud et les valeurs des résistances.

sciences ingénieur première électrocinétique outils d’étude

D’après le schéma ci-dessus, on peut établir d’après la loi des nœuds, la relation suivante :

IG=IR1+IR2IG=I{R1}+I{R_2}

Si nous connaissons IGIG et les valeurs de R1R1 et R2R2, nous pouvons utiliser la formule du pont diviseur de courant pour calculer IR1I{R1} ou IR2I{R_2}.

bannière à retenir

À retenir

Grâce au pont diviseur de courant, on peut déduire :

  • IR1=IGR2R1+R2I{R1}=IG\cdot \dfrac{R2}{R1+R2}
  • IR2=IGR1R1+R2I{R2}=IG\cdot \dfrac{R1}{R1+R2}

Associations des résistances

Les résistances en série

bannière à retenir

À retenir

Si, dans un montage, plusieurs résistances sont montées en série, il est possible de simplifier cette représentation en ne représentant qu’une seule résistance équivalente à toutes les résistances en série.

Alt sciences ingénieur première électrocinétique outils d’étude

Reˊq=R1+R2+R3 R\text{éq} = R1 + R2 + R3

Les résistances en dérivation ou parallèle

bannière à retenir

À retenir

Si dans un montage, plusieurs résistances sont montées en dérivation, il est possible de simplifier cette représentation en ne représentant qu’une seule résistance équivalente à toutes les résistances en dérivation.

Alt sciences ingénieur première électrocinétique outils d’étude

1Reˊq=1R1+1R2+1R3\dfrac{1}{ R\text{éq}} =\dfrac{1}{R1} +\dfrac{1}{R2} +\dfrac{1}{R3}

Nous pouvons encore simplifier le calcul d’une résistance équivalente à seulement deux résistances en dérivation.

bannière à retenir

À retenir

Seulement deux résistances sont en dérivation :

Alt sciences ingénieur première électrocinétique outils d’étude

Pour déterminer la valeur équivalente ReˊqR\text{éq}, il suffit de faire le produit des résistances (R1R2R1\cdot R2), divisé par la somme des deux résistances (R1+R2R1+R_2) :

Reˊq=R1R2R1+R2R\text{éq}=\dfrac{R1\cdot R2}{R1+R_2}

Pour en avoir la preuve, il suffit de prendre la première formule, avec les inverses, et de réduire au même dénominateur.

Les résistances en groupement mixte

Il arrive que le montage ne soit pas simplement une association en série ou en dérivation, mais un mélange des deux. Nous appellerons cela un montage mixte.

  • Pour simplifier un tel montage, il faut le décomposer en plusieurs étapes simples.
bannière exemple

Exemple

Sur le montage ci-dessous, nous observons 44 résistances.

Alt sciences ingénieur première électrocinétique outils d’étude

Pour résoudre cette simplification, les étapes sont les suivantes.

  • On associe R2R2 et R3R3, qui sont en série ; on obtient Reˊq,1R_{\text{éq},1}.

Alt sciences ingénieur première électrocinétique outils d’étude

  • Reˊq,1=R2+R3R{\text{éq},1}=R2+R_3
  • On associe Reˊq,1R{\text{éq},1} et R4R4, qui sont en dérivation ; on obtient Reˊq,2R_{\text{éq},2}.

Alt sciences ingénieur première électrocinétique outils d’étude

  • 1Reˊq,2=1Reˊq,1+1R4\dfrac 1{R{\text{éq},2}}=\dfrac 1{ R{\text{éq},1}}+\dfrac 1{R_4}

On remarque aussi que, avec Reˊq,1R{\text{éq},1} et R4R4, nous avons seulement deux résistances en dérivation.

  • Reˊq,2=Reˊq,1R4Reˊq,1+R4R{\text{éq},2}= \dfrac{R{\text{éq},1}\cdot R4}{R{\text{éq},1}+R_4}
  • On termine par l’association Reˊq,2 R{\text{éq},2} et R1R1, qui sont en série ; on obtient Reˊq,3R_{\text{éq},3}.

Alt sciences ingénieur première électrocinétique outils d’étude

  • Reˊq,3=R1+Reˊq,2 R{\text{éq},3}=R1+ R_{\text{éq},2}
  • La simplification est terminée : nous obtenons une seule résistance équivalente, notée Reˊq,3 R_{\text{éq},3}, dont nous connaissons l’expression.
  • La représentation est ainsi beaucoup plus simple.

Modèles de Thévenin et de Norton

Modèle de Thévenin

Nous savons qu’un électromoteur fonctionnant en générateur (batterie alimentant un récepteur) peut être représenté de la façon suivante :

Alt sciences ingénieur première électrocinétique outils d’étude

Il en va de même pour un électromoteur fonctionnant en récepteur : c’est le cas d’une batterie qui est en train de se recharger.

Alt sciences ingénieur première électrocinétique outils d’étude

bannière definition

Définition

Modèle de Thévenin :

Le modèle équivalent de Thévenin définit un électromoteur par deux dipôles simples représentés en série :

  • un résistor correspondant à la résistance interne de l’électromoteur ;
  • une source de tension égale à la force électromotrice notée EE, équivalente à la différence de potentiel entre les bornes (+\red + et -) de la batterie, lorsque celle-ci est déconnectée (tension à vide).

Il est important de bien visualiser la différence entre les deux exemples. Le sens de la flèche du courant entre les deux modèles générateur et récepteur est inversé :

  • le générateur fournit le courant : il sort ;
  • le récepteur reçoit le courant : il entre.

Alt sciences ingénieur première électrocinétique outils d’étude

bannière à retenir

À retenir

  • Loi des mailles sur le montage générateur : U=ERIU=E-R\cdot I ;
  • Loi des mailles sur le montage récepteur : U=E+RIU = E + R\cdot I.

Le théorème de Thévenin est valable pour n’importe quel montage ou portion de circuit. Il permet de simplifier un schéma complexe, ou dont la composition est parfois inconnue, par un modèle simplifié comprenant un générateur de tension EE en série avec une résistance RR.

Bilan de puissance d’un générateur

  • D’après le modèle de Thévenin d’un générateur, on note la présence d’une tension UU positive, égale à sa force électromotrice notée EE, à laquelle il faut soustraire une chute de tension équivalente au produit RIR\cdot I (loi des mailles) :

U=ERI \red{U = E - R\cdot I}

  • La puissance disponible (utile) PuP_\text u au récepteur pour fonctionner est égale à :

Pu=UI=(ERI)I=EIRI2=EIRI2\begin{aligned} \red{P_\text u} &\red{= U\cdot I} \ &= (E - R\cdot I)\cdot I \ &= E\cdot I - R\cdot I^2 \ &\red{= E\cdot I - R\cdot I^2} \end{aligned}

  • La puissance chimique PchP_\text{ch} du générateur est égale à :

Pch=EI\red{P_\text{ch}=E\cdot I}

  • Les pertes par effet Joule PJP_\text{J} de ce générateur proviennent de la résistance :

PJ=RI2\red{P_\text{J} = R\cdot I^2}

  • Le bilan des puissances de ce générateur donne :

Pch=Pu+PJ\red{P\text{ch} = P\text u + P_\text{J}}

Alt sciences ingénieur première électrocinétique outils d’étude

  • On peut exprimer le rendement, noté η\eta, du générateur en divisant la puissance utilisée par le récepteur (PuP\text u) par la puissance chimique (PchP\text{ch}) développée par la batterie :

η=PuPch\red{\eta = \dfrac{ P\text u}{P\text{ch}}}

Le modèle de Norton

bannière definition

Définition

Modèle de Norton :

Le modèle équivalent de Norton permet de définir un électromoteur par deux dipôles simples représentés en dérivation :

  • un générateur de courant parfait ;
  • un résistor correspondant à la résistance interne de l’électromoteur.

Le générateur de courant parfait est symbolisé ainsi :

Alt sciences ingénieur première électrocinétique outils d’étude

  • Il est donc possible de transformer le modèle équivalent de Thévenin en modèle équivalent de Norton.

Alt sciences ingénieur première électrocinétique outils d’étude

bannière à retenir

À retenir

Pour déterminer les éléments du modèle de Norton :

IN=ERR=RNI=INUR=INURN\begin{aligned} I\text{N}&=\dfrac ER \ R&=R\text{N} \ \ I&=I\text{N}-\dfrac UR \ &=I\text{N}-\dfrac U{R_\text{N}} \end{aligned}

Le théorème de superposition

Le théorème de superposition s’applique pour un montage comportant des composants linéaires tels que : générateur, résistance, condensateur, inductance.

  • Dans ce montage, on souhaite déterminer la tension notée UU.

Alt sciences ingénieur première électrocinétique outils d’étude

Il est nécessaire d’utiliser le théorème de superposition lorsqu’un montage comporte plus d’un électromoteur.
Pour simplifier un montage comportant plusieurs électromoteurs, il faut procéder par étapes et observer le montage en ne tenant compte que d’une seule force électromotrice (f.é.m. EE), on remplacera les autres f.é.m. par un conducteur.

Alt sciences ingénieur première électrocinétique outils d’étude

bannière à retenir

À retenir

Pour connaître la tension UU du circuit, il suffit de faire la somme algébrique : U=U+UU=U^{\prime} +U^{\prime\prime}, en utilisant le pont diviseur de tension.

Étape 1 : déterminer UU^{\prime}

On supprime la force électromotrice E1E_1 du premier électromoteur et on la remplace par un conducteur.

  • On a 33 résistances et la f.é.m. E2E_2.

Alt sciences ingénieur première électrocinétique outils d’étude

R1R1 et RR sont en dérivation, il faut calculer la résistance équivalente Reˊq,1R{\text{éq},1}.

Reˊq,1=R1RR1+R R{\text{éq},1}=\dfrac{R1\cdot R}{R_1+R}

  • On obtient le montage suivant :

Alt sciences ingénieur première électrocinétique outils d’étude

Avec cette représentation, il est possible d’utiliser le pont diviseur de tension pour calculer la tension UU^{\prime} :

U=E2Reˊq,1Reˊq,1+R2U^{\prime} =E2\cdot \dfrac{R{\text{éq},1}}{R{\text{éq},1}+R2}

Étape 2 : déterminer UU^{\prime\prime}

On supprime la force électromotrice E2E_2 du second électromoteur et on la remplace par un conducteur.

  • On se retrouve avec 33 résistances et la f.é.m. E1E_1.

Alt sciences ingénieur première électrocinétique outils d’étude

R2R2 et RR sont en dérivation, il faut calculer la résistance équivalente Reˊq,2R{\text{éq},2} :

Reˊq,2=R2RR2+RR{\text{éq},2}=\dfrac{ R2\cdot R}{ R_2+R}

  • On obtient le montage suivant :

Alt sciences ingénieur première électrocinétique outils d’étude

Avec cette représentation, il est possible d’utiliser le pont diviseur de tension pour calculer la tension UU^{\prime\prime} :

U=E1Reˊq,2Reˊq,2+R1U^{\prime\prime} =E1\cdot \dfrac{R{\text{éq},2}}{R{\text{éq},2}+R1}

Étape 3 : déterminer UU

Pour calculer la tension UU aux bornes de la résistance RR, il suffit de faire la somme algébrique suivante :

U=U+U=E2Reˊq,1Reˊq,1+R2+E1Reˊq,2Reˊq,2+R1\begin{aligned} U&=U^{\prime} +U^{\prime\prime} \ &=E2\cdot \dfrac{ R{\text{éq},1}}{R{\text{éq},1}+R2}+E1\cdot \dfrac{ R{\text{éq},2}}{R{\text{éq},2}+R1} \end{aligned}

Application

Cette dernière partie va s’appuyer sur un exercice chiffré, proche de l’exemple du paragraphe précédent, dont la résolution fera appel aux notions définies dans ce cours.

  • Nous cherchons donc à déterminer la tension UU :

Alt sciences ingénieur première électrocinétique outils d’étude

  • On supprime la force électromotrice E1E_1 du premier électromoteur, et on la remplace par un conducteur.
  • On se retrouve avec 33 résistances.

Alt sciences ingénieur première électrocinétique outils d’étude

R1R1 et RR sont en dérivation, on calcule la résistance équivalente Reˊq,1R{\text{éq},1} :

Reˊq,1=R1RR1+R=10×1010+10=10020=5 Ω\begin{aligned} R{\text{éq},1}&=\dfrac{ R1\cdot R}{R_1+R} \ &= \dfrac{10\times10}{10+10} \ &=\dfrac{100}{20} \ &=5\ \Omega \end{aligned}

bannière astuce

Astuce

Lorsque deux résistances identiques sont en dérivation, la valeur équivalente de cette dérivation correspond à la moitié de la valeur d’une de ces résistances.

Dans la situation précédente, R1R_1 et RR valent 10 Ω10\ \Omega et elles sont en dérivation.

  • La résistance équivalente est égale à la moitié d’une des deux résistances :

Reˊq,1=R12=R2=5 ΩR{\text{éq},1}=\dfrac{R1}2=\dfrac R2=5\ \Omega

Alt sciences ingénieur première électrocinétique outils d’étude

  • Appliquons le pont diviseur de tension pour calculer UU^{\prime} :

U=E2Reˊq,1Reˊq,1+R2=20×55+15=20×520=5 V\begin{aligned} U^{\prime} &=E2\cdot \dfrac{R{\text{éq},1}}{ R{\text{éq},1}+R2} \ &=20\times\dfrac{5}{5+15} \ &=20\times\dfrac{5}{20} \ &=5\ \text{V} \end{aligned}

  • On supprime la force électromotrice E2E_2 du second électromoteur, et on la remplace par un conducteur.
  • On se retrouve avec 33 résistances.

Alt sciences ingénieur première électrocinétique outils d’étude

R2R2 et R3R3 sont en dérivation, on calcule la résistance équivalente Reˊq,2 R_{\text{éq},2} :

Reˊq,2=R2R3R2+R3=10×1510+15=15025=6 Ω\begin{aligned} R{\text{éq},2}&=\dfrac{ R2\cdot R3}{R2+R_3} \ &= \dfrac{10\times15}{10+15} \ &=\dfrac{150}{25} \ &=6\ \Omega \end{aligned}

  • Appliquons le pont diviseur de tension pour calculer UU^{\prime\prime} :

U=E1Reˊq,2Reˊq,2+R1=12×66+10=12×616=4,5 V\begin{aligned} U^{\prime\prime} &=E1\cdot \dfrac{R{\text{éq},2}}{ R{\text{éq},2}+R1} \ &=12\times\dfrac{6}{6+10} \ &=12\times\dfrac{6}{16} \ &=4,5\ \text{V} \end{aligned}

  • Appliquons le théorème de superposition pour calculer la tension UU :

U=U+U=5+4,5=9,5 V\begin{aligned} U&=U^{\prime} +U^{\prime\prime} \ &=5+4,5 \ &=9,5\ \text{V} \end{aligned}

  • La tension aux bornes de la résistance RR est donc de 9,5 V9,5\ \text{V}.

Conclusion :

Dans ce cours, nous avons vu les principales lois utilisées en électronique ou en électricité, qui permettent de dimensionner ou de calculer les grandeurs élémentaires d’un montage électrique.
Nous avons découvert, ou redécouvert, les méthodes pour calculer les courants et les tensions dans un montage électrique. Les différents théorèmes nous seront utiles pour simplifier certains circuits complexes. Et les méthodes de simplification que nous avons vues demandent d’être rigoureux, pour ne pas faire d’erreur.
Ainsi, en maîtrisant ces divers outils de calcul, il nous sera possible de réaliser plus facilement des prototypes lors de la conception d’équipements électroniques.