Médaille
N°1 pour apprendre & réviser du collège au lycée.
Modèles démographiques : comprendre l’évolution quantitative des populations

Déjà plus de

1 million

d'inscrits !

Les images ne sont pas encore disponibles pour ce cours.

Celles présentes sont juste des « brouillons »
afin de permettre une meilleure compréhension du cours,
jusqu’à ce que les définitives soient prêtes.

Nos graphistes font tout leur possible pour les réaliser au plus vite.

😉

Introduction :

Dans le cours précédent, « Origine et évolution de la biodiversité », nous avons notamment découvert comment estimer une population, en prenant l’exemple du nombre de batraciens dans un étang.
Or, si estimer une population est indispensable, il est tout aussi important, si ce n’est plus, d’ensuite étudier l’évolution de cette population, c’est-à-dire de savoir si, au fil du temps, son effectif diminuera, restera constant ou augmentera.
Par exemple, prévoir que la population d’une espèce va décroître jusqu’à disparaître peut permettre de prendre les dispositions nécessaires à sa sauvegarde avant qu’il ne soit trop tard.
Ou, à l’inverse, il peut être important de se rendre compte qu’une espèce croîtra tant qu’elle finira par mettre en danger son écosystème.

Ainsi, dans ce cours, nous allons découvrir comment modéliser mathématiquement l’évolution des effectifs d’une population, grâce à des suites numériques particulières : les suites arithmétiques pour le modèle linéaire et les suites géométriques pour le modèle exponentiel.
Cela nous permettra d’étudier le raisonnement de Malthus et d’en comprendre les limites.
Enfin, à travers un exemple concret, celui de l’évolution de la population japonaise, nous verrons comment appliquer le modèle exponentiel.

Modèle linéaire et suites arithmétiques

Nous allons commencer par le modèle le plus simple et, pour cela, nous allons nous servir de l’exemple des batraciens du cours précédent.

Modèle théorique

Nous avions estimé à 15751\,575 le nombre de batraciens dans l’étang. Nous prenons donc cet effectif pour référence (c’est l’année 00).
De plus, en considérant le nombre théorique de décès et de naissances par an, nous supposons que la population diminue chaque année de 135135 individus.

  • Nous obtenons ainsi le tableau d’effectifs suivant :

Année nn Effectif unu_n
00 15751\,575
11 14401\,440
22 13051\,305
33 11701\,170
44 10351\,035
55 900900
  • Représentons maintenant graphiquement le nuage de points, en portant le rang de l’année nn en abscisse et l’effectif unu_n en ordonnée :

Alt texte Image temporaire

Nous voyons que tous les points sont alignés.

  • Ils appartiennent donc à une même droite :

Alt texte Image temporaire

Sous les hypothèses de notre exemple, la décroissance de la population des batraciens est dite linéaire (elle « suit » une droite).

bannière definition

Définition

Modèle linéaire :

Une grandeur discrète uu varie de manière linéaire en fonction d’un palier entier nn si sa variation absolue un+1unu{n+1}-un est constante.
Dans ce cas, les points (n ;u(n))\big(n\ ;\, u(n)\big) sont alignés et situés sur une droite.

Reprenons notre exemple et déterminons l’équation réduite de la droite, qui sera de la forme y=ax+by=ax+b, comme nous avons appris à le faire en classe de seconde.

  • Nous savons que, par exemple, elle passe par (1 ;1440)(1\ ;\, 1\,440) et (3 ;1170)(3\ ;\,1\,170).
  • Nous en déduisons son coefficient directeur aa :

a=1170144031=2702=135\begin{aligned} a&=\dfrac{1\,170-1\,440}{3-1} \ &=\dfrac{-270}{2} \ &=-135 \end{aligned}

Nous remarquons qu’il est égal à la variation absolue, c’est-à-dire à la différence d’effectif d’une année à l’autre.

  • Nous savons aussi qu’elle passe par (0 ;1575)(0\ ;\, 1\,575).
  • Nous en déduisons :

b=1575b=1\,575

bb est ainsi égal à u0u_0, c’est-à-dire à la valeur de l’effectif de référence, à l’année 00.

  • Nous pouvons donc donner l’équation réduite de la droite à laquelle appartiennent tous les points :

y=135x+1575y=-135x+1\,575

  • Dans notre cas, uu associe donc à la variable entière nn l’effectif de la population de l’année nn.
  • Cette fonction est définie pour tout entier naturel nn par :

un=135n+1575u_n=-135n+1\,575

bannière attention

Attention

Si le palier qui nous intéresse ici est l’année, nous pouvons également choisir n’importe quel autre palier (décennie, quart de siècle, siècle, etc.), dans la mesure où ce choix est pertinent dans l’étude concernée.

Suites arithmétiques

Dans notre modèle linéaire précédent, nous avons dit que la variation absolue de l’effectif des batraciens est constante et égale à 135-135.
Autrement dit, si nous considérons deux années consécutives quelconques nn et (n+1)(n+1), et leurs effectifs respectifs unun et un+1u{n+1}, nous avons logiquement :

un+1un=135un+1=un135u{n+1} - un=-135 \Leftrightarrow u{n+1}=un-135

  • Nous définissons ainsi une suite arithmétique.
bannière definition

Définition

Suite arithmétique :

Une suite (un)(u_n) est arithmétique si et seulement si il existe un réel rr tel que, pour tout nNn\in \mathbb N :

un+1=un+ru{n+1}=un+r

  • Le réel rr est appelé raison de la suite (un)(u_n).

Considérons le premier terme u0u0 de la suite (un)(un).
Nous pouvons représenter l’évolution de la manière suivante, jusqu’à nn :

u0+ru1+ru2+r+run1+rn foisunu0\, \overbrace{\xrightarrow{+r}u1\xrightarrow{+r}u2\xrightarrow{+r}… \xrightarrow{+r}u{n-1}\xrightarrow{+r}}^{n \text{ fois}}\,u_n

Pour passer d’un terme au suivant, nous ajoutons toujours le même nombre : la raison rr.
En particulier, pour passer de u0u0 à unun, nous ajoutons nn fois rr à u0u0 et obtenons unun.

  • Nous en déduisons la propriété suivante.
bannière propriete

Propriété

On considère une suite arithmétique de premier terme u0u_0 et de raison rr. Alors, pour tout nNn\in\mathbb N :

un=u0+nrun=u0+nr

  • unun est appelé terme général de la suite et cette expression, qui donne la valeur de unun en fonction de nn, est appelée formule explicite.
bannière exemple

Exemple

Reprenons l’exemple des batraciens, la suite (un)(un) est une suite arithmétique de premier terme u0=1575u0=1\,575 et de raison r=135r=-135. Son terme général est :

un=1575135nu_n=1\,575 -135n

  • Nous retrouvons, bien sûr, la définition de la fonction vue dans le premier paragraphe.

Calculons maintenant u8u_8 :

u8=u0+8r=15758×135=495\begin{aligned} u8&=u0+8r \ &=1\,575-8\times 135 \ &=495 \end{aligned}

Approfondissons encore un peu notre étude de l’évolution de la population des batraciens. La raison de la suite arithmétique qui la modélise est strictement négative.

  • La suite est strictement décroissante.
bannière propriete

Propriété

Soit (un)(u_n) une suite arithmétique de raison rr.

  • Si r=0r=0, (un)(un) est constante et vaut u0u0.
  • Si r>0r>0, (un)(u_n) est strictement croissante et tendra vers ++\infty.
  • Si r<0r<0, (un)(u_n) est strictement décroissante et tendra vers -\infty.

Comme nous nous intéressons à des effectifs, ceux-ci ne peuvent pas être négatifs.
En revanche, ce qui nous intéresse lorsque la suite est décroissante, c’est de savoir à quel rang nn unu_n s’annulera, car cela correspond tout simplement à l’extinction de l’espèce étudiée.

  • Pour cela, nous pouvons résoudre l’équation un=0u_n=0.
bannière exemple

Exemple

Pour les batraciens, cela donne :

un=01575135n=0n=157513512\begin{aligned} u_n=0 &\Leftrightarrow 1\,575 -135n=0 \ &\Leftrightarrow n=\dfrac{1\,575}{135} \approx 12 \end{aligned}

Si rien n’est fait, 1212 ans après le début de l’étude, les batraciens auront disparu de l’étang.

bannière astuce

Astuce

Remarquons que nous pouvons lire cette information directement sur la représentation graphique que nous avons donnée dans le premier paragraphe.

  • Il s’agit simplement du point où la droite coupe l’axe des abscisses.
bannière à retenir

À retenir

À un modèle linéaire, nous pouvons associer une suite (un)(u_n) dite arithmétique, dont le terme général est donné par la formule :

un=u0+nr[ouˋ r est la raison de la suite, eˊgale aˋ la variation absolue,et ouˋ u0 est le premier terme]\begin{aligned} un&=u0+nr \ &\footnotesize{\textcolor{#A9A9A9}{\text{[où rr est la raison de la suite, égale à la variation absolue,}}} \ &\footnotesize{\textcolor{#A9A9A9}{\text{et où u0u_0 est le premier terme]}}} \end{aligned}

Modélisation réelle

Dans la pratique, les observations expérimentales ne correspondent jamais précisément aux prévisions théoriques.

bannière à retenir

À retenir

Cependant, lorsque la variation absolue d’une population entre 22 paliers est presque constante et peut donc être assimilée à une valeur rr, nous pouvons modéliser son évolution par un modèle linéaire et par une suite arithmétique.

  • Plus précisément, nous pouvons ajuster le nuage de points qui représente l’évolution de la population par une droite, en effectuant une régression linéaire.

Nous allons donc donner la méthode pour effectuer cette régression linéaire, en l’appliquant sur l’exemple de la population de batraciens au moyen d’un tableur (nous pouvons aussi nous servir d’une calculatrice).

bannière definition

Définition

Régression linéaire :

Effectuer une régression linéaire revient à déterminer la droite la plus ajustée aux données de l’étude.
Il existe plusieurs méthodes ; dans ce cours, nous nous intéressons à la droite dite des moindres carrés, utilisée par les tableurs ou les calculatrices.

  • Cette droite minimise les carrés des écarts entre les valeurs théoriques et les valeurs observées.

Reprenons donc notre exemple de la population de batraciens. Mais, cette fois, nous avons les relevés expérimentaux suivants, obtenus grâce aux techniques vues dans le cours précédent :

Année nn Effectif unu_n
00 15751\,575
11 14251\,425
22 13201\,320
33 11351\,135
44 10201\,020
55 890890
  • Nous commençons par représenter le nuage de points, au moyen d’un tableur :

Alt texte Image temporaire

bannière astuce

Astuce

Sur la feuille d’un tableur :

  • entrer dans une colonne les années et dans une autre colonne les effectifs observés ;
  • sélectionner les cellules concernées ;
  • insérer le graphique « Nuages de points » :
  • avec Calc d’OpenOffice : Insertion / Diagramme / XY (dispersion) / Points seuls,
  • avec Excel : Insérer / Graphique / XY (nuage de points).
  • Nous effectuons ensuite la régression linéaire.
bannière astuce

Astuce

Sur la feuille du tableur, une fois le graphique réalisé :

  • avec Calc d’OpenOffice, le diagramme étant sélectionné (double-clic dessus, si nécessaire) : Insertion / Courbe de tendance / Linéaire, et cocher : Afficher l’équation ;
  • avec Excel : Clic droit sur un point du graphique / Ajouter une courbe de tendance / Linéaire, et cocher : Afficher l’équation sur le graphique.
  • Nous obtenons ainsi un graphe du type :

Alt texte Image temporaire

  • Nous en déduisons les paramètres du modèle linéaire.

Le tableur nous donne donc l’équation de la droite de régression linéaire correspondant à nos données (nous arrondissons à l’entier le plus proche), qui nous indique la raison $r$ et le premier terme u0u0 de la suite arithmétique (un)(un) associée :

yun=138rx+1572u0\underbrace y{un}=\underbrace{-138}r x+\underbrace{1\,572}{u_0}

  • Nous pouvons en déduire le terme général de la suite arithmétique, pour tout entier naturel nn :

un=nr+u0=138n+1572\begin{aligned} un&= nr+u0 \ &= -138n+1\,572 \end{aligned}

Nous pouvons maintenant estimer la population pour chaque année nn.
Par exemple, calculons u8u_8 avec ce modèle :

u8=138×8+1572=468\begin{aligned} u_8&=-138\times 8+1\,572 \ &=468 \end{aligned}

  • Ainsi, nous estimons l’effectif de batraciens après huit ans proche de 468468 individus.
bannière attention

Attention

Par définition, le modèle linéaire ne convient plus dès lors que la variation absolue de la population change significativement d’un palier à l’autre.
Ainsi, la plupart du temps, il est utilisé pour modéliser l’évolution de ressources, plutôt que celle de populations.

Nous allons donc découvrir un nouveau modèle, dit exponentiel, plus utilisé dès qu’il s’agit de populations animales ou humaines et sur lequel repose celui de Malthus.

Modèle exponentiel et suites géométriques

Dans le modèle linéaire, la variation absolue, c’est-à-dire le nombre d’individus en plus ou en moins, est constante, ou presque constante, et ne dépend donc pas de l’effectif. Et c’est là sa principale limite pour étudier des populations animales ou humaines.
En effet, plus la population sera nombreuse, plus les nombres de naissances et de décès, par exemple, seront élevés.

Rappels et définition du modèle

Nous allons donc cette fois considérer que la variation absolue n’est plus constante, mais proportionnelle à l’effectif courant.

  • Cela signifie que le taux d’évolution (ou de variation) sera constant d’une année à l’autre.
bannière rappel

Rappel

On appelle taux d’évolution, ou taux de variation, entre une valeur initiale ViV\text{i} non nulle et une valeur finale VfV\text{f} le nombre :

t=VfViVit=\dfrac {V\text{f}-V\text{i}}{V_\text{i}}

Ce taux peut être positif – augmentation – ou négatif – diminution –, il peut aussi bien sûr être nul – aucune évolution. Enfin, il peut être supérieur à 11 – valeur initiale plus que doublée.

On lui associe un coefficient multiplicateur, égal à 1+t1+t.

  • Ce coefficient permet de trouver VfV\text{f} en multipliant ViV\text{i} par sa valeur :

Vf=(1+t)×ViV\text{f}=(1+t)\times V\text{i}

Nous pouvons maintenant définir ce nouveau modèle, dit exponentiel.

bannière definition

Définition

Modèle exponentiel :

Une grandeur discrète uu varie de manière exponentielle en fonction d’un palier entier nn si sa variation absolue un+1unu{n+1}-un est proportionnelle à sa valeur courante unu_n.
Dans ce cas, sa variation relative (ou taux d’évolution) est constante.

bannière à retenir

À retenir

Dans la pratique, si le taux d’évolution est presque constant et que nous pouvons donc le considérer comme constant, nous utiliserons le modèle exponentiel.

En outre, de la même façon que nous avons associé à un modèle linéaire une suite arithmétique, nous allons associer à un modèle exponentiel une suite géométrique, que nous allons maintenant définir.

Suites géométriques

Nous allons étudier une population dont les taux de natalité tet\text{e} et de mortalité tdt\text{d} sont considérés comme constants d’une année à l’autre (nous négligeons le taux de migration).

bannière definition

Définition

Taux de natalité :

« Le taux de natalité est le rapport du nombre de naissances vivantes de l'année à la population totale moyenne de l'année » (définition de l’Insee).

bannière definition

Définition

Taux de mortalité :

« Le taux (brut) de mortalité est le rapport du nombre de décès de l'année à la population totale moyenne de l'année » (définition de l’Insee).

Nous allons en outre considérer que, à aucun moment, l’effectif de la population ne s’annule.
Et nous nous intéressons à l’évolution de la population entre 22 années consécutives quelconques, nn et (n+1)(n+1), d’effectifs respectifs unun et un+1u{n+1}.

  • Nous avons donc :

un+1Effectif aˋ n+1=unEffectif aˋ n+te×unNaissances durant ntd×unDeˊceˋs durant n\underbrace{u{n+1}}{\footnotesize{\textcolor{#A9A9A9}{\text{Effectif à }n+1}}}=\underbrace{un}{\footnotesize{\textcolor{#A9A9A9}{\text{Effectif à } n}}} + \underbrace{t\text{e} \times un}{\footnotesize{\textcolor{#A9A9A9}{\text{Naissances durant nn}}}} - \underbrace{t\text{d}\times un}{\footnotesize{\textcolor{#A9A9A9}{\text{Décès durant nn}}}}

Nous obtenons ainsi :

un+1=un×(1+tetd)=un×(1+t)[avec t=tetd, le taux annuel d’eˊvolution]\begin{aligned} u{n+1}&=un\times (1+t\text{e}-t\text{d}) \ &=u_n\times (1+t) \ &\footnotesize{\textcolor{#A9A9A9}{\text{[avec $t=t_\text{e}-t_\text{d}$, le taux annuel d’évolution]}}} \end{aligned}

Nous reconnaissons en (1+t)(1+t) le coefficient multiplicateur, que nous notons qq (qui est aussi constant), pour obtenir finalement :

un+1=q×unu{n+1}=q\times un

  • Nous venons de donner l’expression d’une suite géométrique.
bannière definition

Définition

Suite géométrique :

Une suite (un)(u_n) est géométrique si et seulement si il existe un réel qq tel que, pour tout nNn\in \mathbb N :

un+1=q×unu{n+1}=q\times un

  • Le réel qq est appelé raison de la suite (un)(u_n).

Considérons une suite géométrique (un)(un), de premier terme u0u0.
Comme pour les suites arithmétiques, nous pouvons représenter l’évolution entre u0u0 et unun :

u0×qu1×qu2×q×qun1×qn foisunu0\,\overbrace{\xrightarrow{\times q}u1\xrightarrow{\times q}u2\xrightarrow{\times q}… \xrightarrow{\times q}u{n-1}\xrightarrow{\times q}}^{n \text{ fois}}\,u_n

Pour passer d’un terme au suivant, nous multiplions toujours par le même nombre : la raison qq.

  • Nous en déduisons la propriété suivante.
bannière propriete

Propriété

On considère une suite géométrique de premier terme u0u_0 et de raison qq. Alors, pour tout nNn\in\mathbb N :

un=u0×qnun=u0\times q^n

  • unun est appelé terme général de la suite et cette expression, qui donne la valeur de unun en fonction de nn, est appelée formule explicite.

Comme nous nous intéressons ici à l’évolution de population, nous nous en tiendrons à des suites de raison et de premier terme strictement positifs.
Nous pouvons alors déterminer le sens de variation d’une suite géométrique grâce à sa raison.

bannière propriete

Propriété

Soit (un)(un) une suite géométrique de raison q>0q>0 et de premier terme u0>0u0>0.

  • Si q=1q=1 (i.e. t=0t=0), (un)(u_n) est constante.
  • Si q>1q>1 (i.e. t>0t>0), (un)(u_n) est strictement croissante et tendra vers ++\infty.
  • Si 0<q<10 (i.e. t<0t<0), (un)(u_n) est strictement décroissante et tendra vers 00.
bannière à retenir

À retenir

Pour une suite strictement croissante, donc pour q>1q>1, on parle de croissance exponentielle, c’est-à-dire que la variation absolue entre deux termes de la suite « grandira » de plus en plus vite et donc que la croissance sera de plus en plus forte.

bannière astuce

Astuce

Explicitons concrètement le lien entre la raison q>0q>0 de la suite, le taux d’évolution tt et les taux de natalité tet\text{e} et de mortalité tdt\text{d}.

  • Si q=1q=1, nous avons les équivalences suivantes :

1+t=1t=0 [car q=1+t]tetd=0 [car t=tetd]te=td\begin{aligned} 1+t=1 &\Leftrightarrow t = 0 \footnotesize{\textcolor{#A9A9A9}{\text{ [car $q=1+t$]}}} \ &\Leftrightarrow t\text{e} - t\text{d} = 0 \footnotesize{\textcolor{#A9A9A9}{\text{ [car $t= t_\text{e} - t_\text{d}$]}}} \ &\Leftrightarrow t\text{e} =t\text{d} \end{aligned}

Le taux de natalité est égal au taux de mortalité, le nombre de naissances à chaque palier est donc égal au nombre de décès.

  • L’effectif de la population restera constant, égal à l’effectif initial.
  • De la même façon, si q>1q>1, nous avons alors les équivalences suivantes :

1+t>1t>0tetd>0te>td\begin{aligned} 1+t>1 &\Leftrightarrow t > 0 \ &\Leftrightarrow t\text{e} - t\text{d} > 0 \ &\Leftrightarrow t\text{e} > t\text{d} \end{aligned}

Le taux de natalité est supérieur au taux de mortalité, le nombre de naissances à chaque palier est donc supérieur au nombre de décès.

  • L’effectif de la population augmentera de plus en plus vite.
  • Enfin, si q<1q<1, nous avons les équivalences suivantes :

1+t<1t<0tetd<0te<td\begin{aligned} 1+t<1 &\Leftrightarrow t < 0 \\ &\Leftrightarrow t_\text{e} - t_\text{d} < 0 \\ &\Leftrightarrow t_\text{e} < t_\text{d} \end{aligned}

Le taux de natalité est inférieur au taux de mortalité, le nombre de naissances à chaque palier est donc inférieur au nombre de décès.

  • L’effectif de la population diminuera et tendra vers 00.

Représentation graphique

Considérons l’évolution annuelle d’une population modélisée par la suite géométrique (un)(un) de premier terme u0=11u0=11 et de raison q=1,028q=1,028 (soit un taux d’évolution t=q1=0,028=2,8%t=q-1=0,028= 2,8\,\%), dont nous pouvons donner le terme général :

un=u0×qn=11×1,028n\begin{aligned} un&=u0\times q^n \ &=11\times 1,028^n \end{aligned}

  • Les points correspondant aux termes de la suite appartiennent donc tous à la courbe représentative de la fonction :

x11×1,028xx\mapsto 11\times 1,028^x

Alt texte Image temporaire

Nous remarquons que la fonction représentée croît effectivement de plus en plus vite.

bannière astuce

Astuce

Pour l’évolution annuelle d’une population modélisée par une telle suite, nous pouvons déterminer graphiquement le temps de doublement de la population considérée :

  • nous choisissons un point, par exemple celui représentant la population à l’année 1010 ;
  • nous traçons la droite horizontale d’équation y=u10=14,5y=u_{10}=14,5 ;
  • nous traçons ensuite la droite horizontale d’équation y=14,5×2=29y=14,5\times 2=29 ;
  • nous repérons le point d’intersection de cette droite avec la courbe ;
  • l’abscisse de ce point nous donnera l’année à laquelle la population de l’année 1010 aura doublé : ici, à n=35n=35 ;
  • nous calculons la différence pour déterminer le temps de doublement : 3510=2535-10=25.

Remarquons que nous trouvons des résultats équivalents quel que soit le point initial choisi.

Alt texte Image temporaire

  • Un taux d’évolution de 2,8%2,8\,\% peut sembler faible ; pourtant, avec un tel taux, il faudra seulement 2525 ans pour que la population double.

Allons un peu plus loin, pour ceux qui suivent la spécialité « Mathématiques », qui connaissent la fonction exponentielle, éponyme du modèle, et qui découvrent cette année la fonction logarithme népérien.
Une suite géométrique (un)(u_n), de raison qq et de premier terme $u_0$, est définie par son terme général, pour tout entier naturel nn :

un=u0×qnun= u0\times q^n

Nous nous sommes placés dans l’hypothèse où qq est strictement positif, donc qnq^n est aussi strictement positif pour tout entier naturel nn.

  • Nous pouvons donc écrire, en utilisant notamment les propriétés algébriques de la fonction logarithme népérien :

un=u0×eln(qn)[car exp et ln sont des fonctions reˊciproques]=u0×eln(q)×n[avec ln(q) un reˊel, et ln(q)<0 si 0<q<1ln(q)0 si q1]\begin{aligned} un&=u0\times \text{e}^{\ln{(q^n)}} \ &\footnotesize{\textcolor{#A9A9A9}{\text{[car $\exp$ et $\ln$ sont des fonctions réciproques]}}} \ &=u_0\times \text{e}^{\ln{(q)\times n}} \ &\footnotesize{\textcolor{#A9A9A9}{\text{[avec $\ln{(q)}$ un réel, et $\ln{(q)}<0$ si $00$ si $q>1$]}}} \end{aligned}

Nous avons donc fait apparaître la fonction exponentielle, d’où le nom donné au modèle exponentiel et la qualification de croissance exponentielle.

  • Nous pouvons aussi confirmer les limites données plus haut (avec u0>0u_0>0), connaissant les limites de la fonction exponentielle :

Si 0<q<1 : limn+u0×eln(q)×n=0Si q>1 : limn+u0×eln(q)×n=+\begin{aligned} \textcolor{#A9A9A9}{\text{Si $0< q <1$\ : }} &\lim\limits{n \to +\infty} u0\times \text{e}^{\ln{(q)\times n}}=0 \ \textcolor{#A9A9A9}{\text{Si $q>1$\ : }} &\lim\limits{n \to +\infty} u0\times \text{e}^{\ln{(q)\times n}}=+\infty \end{aligned}

Modèle de Malthus et modèle exponentiel

Thomas Malthus, économiste britannique des XVIIIe et XIXe siècles, publie en 1798 son Essai sur le principe de population, qui rencontre un vif succès, tout en déclenchant nombre de polémiques. Il fut le premier à appliquer le modèle exponentiel à l’étude de populations.

En nous fondant sur une citation de son ouvrage, nous allons voir comment, à partir d’un modèle exponentiel appliqué à l’évolution de la population britannique et en se servant également d’un modèle linéaire pour les ressources, il a travaillé sur le rapport entre l’évolution d’une population et ses moyens de subsistance.

  • Ainsi, en 1798, Malthus écrivait :
bannière citation

Citation

« Comptons pour 11 millions11\ \text{millions} la population de la Grande-Bretagne et supposons que le produit actuel de son sol suffit pour la maintenir.
« Au bout de 2525 ans, la population sera de 22 millions22\ \text{millions} ; et la nourriture ayant également doublé, elle suffira encore à l’entretenir.
« Après une deuxième période de 2525 ans, la population sera portée à 44 millions44\ \text{millions}, mais les moyens de subsistance ne pourront plus nourrir que 33 millions33\ \text{millions} d’habitants.
« Dans la période suivante, la population – arrivée à 88 millions88\ \text{millions} – ne trouvera des moyens de subsistance que pour la moitié de ce nombre. »

Modélisation mathématique

  • Selon le propos de Malthus, la population britannique double tous les 2525 ans.

Considérons donc la suite (un)(un) qui modélise la population en millions d’habitants par paliers de 2525 ans.
Nous avons donc : u0=11u
0=11, u1=22u1=22, u2=44u2=44, u3=88u_3=88, etc.

  • Pour passer d’un terme de la suite au suivant, on multiplie par 22, donc nous reconnaissons les termes d’une suite géométrique de raison 22 et de premier terme u0=11u_0=11 ; pour tout entier naturel nn, nous avons :

un+1=2unu{n+1}=2un

Il s’agit donc d’un modèle exponentiel et nous pouvons donner le terme général de (un)(u_n), pour tout entier naturel nn :

un=11×2nu_n=11\times 2^n

Utilisons cette formule pour calculer, par exemple, la population prévue par ce modèle après 125125 ans, soit 5×255\times 25 ans :

u5=11×25=352 millions\begin{aligned} u_5&= 11\times 2^5 \ &=352\ \text{millions} \end{aligned}

bannière astuce

Astuce

Dans la partie précédente, nous avons vu qu’un temps de doublement de la population de 2525 ans correspond à un taux annuel d’évolution d’environ 2,8%2,8\,\%.

  • Intéressons-nous maintenant au propos de Malthus sur l’évolution des moyens de subsistance.

Pour cela, considérons la suite (vn)(vn) qui modélise l’évolution de ces moyens de subsistance et assimilons-les au nombre de personnes (en millions) qu’ils peuvent satisfaire.
Nous obtenons ainsi, d’après le raisonnement donné : v0=11v
0=11, v1=22v1=22, v2=33v2=33, v3=44v_3=44.

  • Pour passer d’un terme de la suite au suivant, on ajoute 1111, donc nous reconnaissons les termes d’une suite arithmétique de raison 1111 et de premier terme v0=11v_0=11 ; pour tout entier naturel nn, nous avons :

vn+1=vn+11v{n+1}=vn+11

Il s’agit donc d’un modèle linéaire et nous pouvons là aussi donner le terme général de la suite, pour tout entier naturel nn :

vn=11+11nv_n=11+11n

Utilisons cette formule pour calculer le nombre de personnes qui peuvent être satisfaites selon ce modèle après 125125 ans, soit 5×255\times 25 ans :

v5=11+11×5=66 millions\begin{aligned} v_5&= 11+11\times 5 \ &=66\ \text{millions} \end{aligned}

Interprétation

Nous avons calculé u5=352u5=352 et v5=66v5=66.

  • Cela veut dire que, selon le modèle de Malthus, au bout de 125125 ans, la Grande-Bretagne aura une population de 352 millions352\ \text{millions} de personnes quand les ressources disponibles ne permettront la subsistance que de 66 millions66\ \text{millions} d’individus…

Pour rendre encore plus évident ce déséquilibre, représentons sur un même graphe les deux modèles :

Alt texte Image temporaire

bannière à retenir

À retenir

Pour remédier à ce déséquilibre, Thomas Malthus propose d’agir sur la production de ressources et, de manière plus polémique, de réduire significativement la croissance démographique.
Ainsi son nom sera-t-il utilisé pour nommer, en 1849, une doctrine tirée de ses travaux qui préconise un contrôle strict des naissances : le malthusianisme. Cette doctrine a notamment inspiré la politique chinoise de l’enfant unique, mise en œuvre jusqu’en 2015.

Toutefois, si le modèle de Malthus peut s’avérer efficace sur des périodes courtes, il s’avère inutile sur des périodes plus longues, justement à cause des diverses limitations que peut connaître une croissance démographique.
En 1838, un mathématicien belge, Pierre-François Verhulst propose un modèle, lui aussi limité, où l’effectif d’une population tend à se stabiliser vers une valeur maximale.
Aujourd’hui, des modèles beaucoup plus élaborés existent. Mis à jour très régulièrement, ils prennent en compte les évolutions des ressources – nourriture, eau, énergie… –, les conditions climatiques, les politiques nationales et internationales, etc.

  • Ainsi, à ce jour, l’ONU prévoit une population d’environ dix milliards de personnes en 2050.

Pour mieux comprendre la nécessité de modèles plus élaborés, il suffit de songer à la dépendance qui existe entre les effectifs d’une espèce et les effectifs de l’espèce prédatrice : la population de la première dépendra de celle de la seconde, et inversement. Il est donc impossible d’étudier la population d’une espèce indépendamment de l’autre.

  • Et si on considère que la proie peut être prédatrice d’une autre espèce et le prédateur proie d’encore une autre, alors nous pouvons imaginer la complexité des interdépendances entre espèces.

Une application : la population du Japon

Dans la dernière partie de ce cours, nous allons appliquer les définitions et propriétés que nous avons découvertes, ou redécouvertes, à un cas concret : l’évolution de la population du Japon, entre les années 1950 et 2010.
Cela nous permettra de voir à la fois l’efficacité du modèle exponentiel sur des temps courts et ses limites sur des périodes plus longues.

Nous disposons des recensements suivants de la population japonaise, de 1950 à 2010, par paliers de 55 ans.

Année Effectif (en millions)
1950 83,683,6
1955 87,987,9
1960 92,592,5
1965 98,898,8
1970 104,7104,7
1975 111,9111,9
1980 116,8116,8
1985 120,8120,8
1990 123,5123,5
1995 125,6125,6
2000 126,9126,9
2005 127,4127,4
2010 128,6128,6

Modélisation : années 1950-1965

  • Commençons par identifier le modèle le plus adapté.

Pour cela :

  • nous étudions les années 1950-1965 ;
  • nous considérons que 1950 marque le début de notre étude,
  • il s’agit de l’année zéro, soit n=0n=0 ;
  • à partir de là, nous nous intéressons à l’évolution annuelle,
  • l’année 1965 correspondra donc à 1950+151950+15, soit n=15n=15 ;
  • nous calculons la variation absolue et le taux d’évolution par paliers de 55 ans, au moyen d’un tableur.

Nous obtenons ainsi le tableau suivant :

Année nn Effectif Variation absolue Taux d’évolution
1950 00 83,683,6
1955 55 87,987,9 4,34,3 0,051440,05144
1960 1010 92,592,5 4,64,6 0,052330,05233
1965 1515 98,898,8 6,36,3 0,068110,06811

Nous remarquons que la variation absolue varie significativement.
En revanche, s’il y a des petits écarts pour le taux d’évolution, le considérer comme constant semble une approximation acceptable.

  • Nous choisissons le modèle exponentiel.
  • Déterminons les paramètres du modèle exponentiel.

Considérons la suite (un)(un) qui modélise l’évolution de la population. Elle est donc géométrique, de premier terme u0=83,6u0=83,6 (soit la population en 1950, année zéro de notre étude) et de raison qq, inconnue.

  • Nous allons déterminer cette dernière en utilisant la formule explicite que nous avons donnée pour une suite géométrique. Pour tout entier naturel nn, nous avons :

un=u0×qnun=u0\times q^n

En effet, nous connaissons la population en 1965, 1515 ans après le début de l’étude : u15=98,8u_{15}=98,8. Nous pouvons donc écrire :

u15=u0×q15q15=u15u0q=(u15u0)115\begin{aligned} u{15} = u0\times q^{15} &\Leftrightarrow q^{15}=\dfrac{u{15}}{u0} \ &\Leftrightarrow q=\left(\dfrac{u{15}}{u0}\right)^{\frac 1{15}} \end{aligned}

En nous servant de la calculatrice, nous trouvons :

q=(98,883,6)1151,0112\begin{aligned} q&=\left(\dfrac{98,8}{83,6}\right)^{\frac 1{15}} \ &\approx 1,0112 \end{aligned}

Nous choisissons donc de modéliser l’évolution de la population par une suite géométrique, de premier terme u0=83,6u_0=83,6 et de raison q=1,0112q=1,0112 (qui correspond à un taux d’évolution annuel de 1,12%1,12\,\%).

  • Nous avons ainsi, pour tout entier naturel nn :

un=83,6×1,0112nu_n=83,6\times 1,0112^n

  • Vérifions que ces paramètres sont cohérents.

Calculons la population en 1955 et 1960 prévue par ce modèle :

u5=83,6×1,0112588,4u10=83,6×1,01121093,4\begin{aligned} u5&=83,6\times 1,0112^5 \ &\approx 88,4 \ u{10}&=83,6\times 1,0112^{10} \ &\approx 93,4 \end{aligned}

Si nous comparons ces résultats aux recensements réels (respectivement 87,987,9 et 92,592,5), nous constatons que les écarts restent raisonnables.

  • Nous décidons de retenir ce modèle.

Efficacité du modèle : années 1966-1980

Nous allons maintenant appliquer ce modèle pour estimer les effectifs de la population de 1966 à 1980, arrondis à 10110^{-1} près :

Année $n$ Effectif unun Année $n$ Effectif unun
1966 1616 99,999,9 1974 2424 109,2109,2
1967 1717 101101 1975 2525 110,4110,4
1968 1818 102,2102,2 1976 2626 111,7111,7
1969 1919 103,3103,3 1977 2727 112,9112,9
1970 2020 104,5104,5 1978 2828 114,2114,2
1971 2121 105,6105,6 1979 2929 115,6115,6
1972 2222 106,8106,8 1980 3030 116,8116,8
1973 2323 108108

Si nous comparons les valeurs réelles pour les années 1970 (104,7104,7), 1975 (111,9111,9) et 1980 (116,8116,8), et les valeurs prévues par le modèle, nous remarquons la fidélité et l’efficacité du modèle.

  • Il prévoit même avec une précision remarquable la population réelle en 1980.

Limites du modèle : années 1981-2010

Continuons à nous servir du modèle pour estimer la population japonaise en 1985 :

u35123,5u_{35}\approx123,5

  • Nous voyons tout de suite que le modèle rencontre maintenant sa limite : la population prévue pour 1985 ne sera en réalité atteinte qu’en 1990, soit 55 ans plus tard.

Ce que nous confirment les termes suivants de la suite (un)(u_n) :

u40130,5 [valeur reˊelle : 123,5]u45138,0 [valeur reˊelle : 125,6]u50145,9 [valeur reˊelle : 126,9]u55154,3 [valeur reˊelle : 127,4]u60163,1 [valeur reˊelle : 128,6]\begin{aligned} u{40}&\approx130,5 \footnotesize{\textcolor{#A9A9A9}{\text{ [valeur réelle\ : $123,5$]}}} \ u{45}&\approx138,0 \footnotesize{\textcolor{#A9A9A9}{\text{ [valeur réelle\ : $125,6$]}}} \ u{50}&\approx145,9 \footnotesize{\textcolor{#A9A9A9}{\text{ [valeur réelle\ : $126,9$]}}} \ u{55}&\approx154,3 \footnotesize{\textcolor{#A9A9A9}{\text{ [valeur réelle\ : $127,4$]}}} \ u_{60}&\approx163,1 \footnotesize{\textcolor{#A9A9A9}{\text{ [valeur réelle\ : $128,6$]}}} \end{aligned}

Au fil du temps, l’écart entre le modèle et les données réelles ne cesse de grandir.

  • Nous venons d’illustrer l’efficacité du modèle exponentiel sur une période courte, mais ses limites à long terme.

Méthodologie

Pour conclure ce cours, donnons une méthodologie à appliquer lors de la modélisation d’une évolution de population.

bannière à retenir

À retenir

  • On identifie le modèle le plus adapté.
  • On détermine ses paramètres.
  • On calcule les résultats donnés par le modèle choisi, on vérifie qu’ils sont cohérents avec les observations.
  • S’il y a des écarts que l’on ne peut négliger, on l’ajuste, ou on restreint son domaine de validité.
  • On effectue des prévisions grâce au modèle.
  • On vérifie, au fil des nouvelles données réelles reçues, la validité du modèle.
  • Dès qu’un écart significatif est constaté, on ajuste le modèle, voire on le reprend complètement.

Conclusion :

Nous avons découvert dans ce cours deux méthodes, assez simples, pour modéliser l’évolution d’une population :

  • le modèle linéaire, avec les suites arithmétiques, à utiliser plutôt pour des ressources que pour des populations ;
  • le modèle exponentiel, avec les suites géométriques, pertinent pour étudier sur un temps court l’évolution d’une population, mais limité à long terme.

Comme toujours en statistique, il convient de garder toujours à l’esprit les limites des modèles utilisés, pour ne pas donner des interprétations erronées et pour éviter de tirer des conclusions injustifiées, voire injustes.
Nous avons également vu que, dans un monde aux ressources finies, toute croissance infinie est inconcevable. Afin de prévoir précisément l’évolution d’une population, il faut ainsi prendre en compte de multiples paramètres : économiques, politiques, climatiques, sociologiques, etc.
L’on comprend alors tous les enjeux transversaux que recèle l’étude des dynamiques démographiques.